As mentioned before, we must distinguish between a vector and its representation in the matrix form.
\longrightarrow Usually, it is represented by a column matrix that is also called "vector".

Hence, we are going to define a notation that will be used to transform a vector in its matrix form and vice-versa.

We will focus on vector with 3 dimensions. However, the theory can be extended easily for vectors with n-dimensions.
Let $\left[\begin{array}{lll}\hat{a}_{1} & \hat{a}_{32} & \hat{a}_{33}\end{array}\right]$ be a set of 3 unit vectors that compose an orthornormal basis of \mathbb{R}^{3}. Hence, any vector $\underline{v}_{\rightarrow} \in \mathbb{R}^{3}$ can be written as:

$$
\underline{v}_{3}=v_{1} \underline{a}_{21}+v_{2} \underline{a}_{32}+v_{3} \underline{a}_{23}
$$

for $v_{i} \in \mathbb{R}, i=[1,2,3]$. We define as vectrix the following column matrix that stores the unit vectors of the selected basis:

$$
\underline{z}_{a} \triangleq\left[\begin{array}{l}
\underline{a}_{2_{1}} \\
\underline{a}_{2} \\
\underline{a}_{3}
\end{array}\right] \quad \begin{aligned}
& \text { Note that the vectrix and the set of unit } \\
& \text { vectors that contains the basis express the same } \\
& \text { information. Hence, we can use the same symbol } \\
& \text { to represent both the vectrix and the basis. }
\end{aligned}
$$

Thus, if the representation of \underline{v}, in the basis \tilde{F}_{a} is:

$$
\underline{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right],
$$

then we can convert between the vector and matrix form of \underline{v}, using:

$$
\begin{aligned}
& \underline{v}_{>}=\underline{v}^{\top} \underline{f}_{a}=\underline{f}_{a}^{\top} \underline{v} \\
& \underline{v}_{3} \cdot \underline{a}_{31}=\left(v_{1} \underline{a}_{21}+v_{2} \underline{a}_{32}+v_{3} \underline{a}_{33}\right) \cdot \underline{a}_{31} \\
& \underline{v}=\underline{v}_{2} \cdot \underline{f}_{a}=\underline{f}_{a} \cdot \underline{v}=\left[\begin{array}{l}
\underline{v}_{2} \cdot \underline{a}_{21} \\
\underline{v}_{2} \cdot \underline{a}_{2} \\
\underline{v}_{2} \cdot \underline{a}_{33}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =V_{1} \\
& \underline{v}^{\top}=\underline{v}_{\rightarrow} \cdot \underline{f}_{a}^{\top}=\underline{f}_{a}^{\top} \cdot \underline{v}_{s}
\end{aligned}
$$

Notice that:

$$
\begin{aligned}
& \underline{z}_{a} \times \dot{z}_{a}^{\top}=\left[\begin{array}{l}
\hat{\hat{a}}_{21} \times \hat{\hat{a}}_{1} \\
\hat{\underline{a}}_{22} \times \hat{a}_{1} \\
\hat{a}_{2_{3}} \times \hat{a}_{1}
\end{array}\right. \\
& \underline{\underline{f}}_{a} \cdot \underline{f}_{a}{ }^{\top}=I_{3}
\end{aligned}
$$

 hand reference frame like:

Using that, it is clear the difference between a vector and its matrix form. The former is independent of the selected basis whereas the later only makes sense if a basis is defined. Thus, let \underline{f}_{a} and ${\underset{F}{b}}$ be two basis and let \underline{v}, be any vector. It can be seen that:

$$
\underline{v}_{2}=\underline{f}_{a}^{\top} \underline{v}_{a}=\underline{f}_{b}^{\top} \underline{v}_{b}
$$

where \underline{v}_{a} and \underline{v}_{b} are the representations of \underline{v}, in \underline{f}_{a} and \underline{f}_{b}, respectively. Analogously:

$$
\begin{aligned}
& \underline{v}_{a}=\underline{f}_{a} \cdot \underline{v}_{,} \\
& \underline{v}_{b}=\underline{\underline{q}}_{b} \cdot \underline{v}_{s}
\end{aligned}
$$

Moreover, we can define the previous operations between vectors using vectrizes:

1) $\underline{U}_{3} \cdot \underline{v} \triangleq \underline{U}_{a}^{\top} \underbrace{\mathcal{F}_{a} \cdot \underline{f}_{a}^{\top}}_{\underline{I}_{3}} \underline{v}_{a}=\underline{U}_{a}^{\top} \underline{v}_{a}$
2) $\underline{U}, \times \underline{v} \triangleq \triangleq \underline{U}_{a}^{\top} \underbrace{\underline{f}_{a} \times \underline{f}_{a}^{\top}}_{-\underline{f}_{a}^{*}} \underline{v}_{a}=-\underline{U}_{a}^{\top} \underline{f}_{a}^{x} \underline{v}_{a}=\underline{\underline{f}}_{a}^{\top} \underline{v}_{a}^{\times} \underline{v}_{a}=\underline{f}_{a}^{\top}\left(\underline{v}_{a} \times \underline{v}_{a}\right)$
 - き $^{*}{ }^{x}$

$$
-\underline{v}_{a}^{x}
$$

This result is valid for orthornormal, right-hand reference frame, because we used $f_{a} \times \mathscr{I}_{a}^{\top}=-\mathcal{F}_{a}^{x}$. Hence, this form to compute the cross product requires that the vectors are represented on the same orthonormal, right. hand frame.

