
 
Rotations of Coordinate Frames

It was already shown that we can convert therepresentation of a vector betweentwodifferentbasis Let's analyzethisprocedure in IR where there is an importantgeometricmeaning
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Hence one can seethat
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ThematrixEba is exactlythesamematrixwedefined

ÊÊ ÊI previously to change basis However it istransposed
becauseofthevectrixdefinitionHere we representedthedestinationbasison thesource basis
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Thus
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Inverse of direction cosine matrices

Fromtheproperties of the vectrizes we have
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The construction of theDCM teach lineis the representation of 3 orthogonal vector onthesamebasis ensures that it has rank 3 Thismeans thattheinverse alwaysexistsThus
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Providedthat thebasis are orthonormal

Thustheinverse ofall DCMs is their transpose

In thesequence noticethat
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Finally as expected Esa is thematrix thatconverts the basisb into thebasis a

The representation of a vector in a specificbasis is unique Hence giventhewaythe
Dems are constructed lbystacking representation of vectors on thesamebasis wecan
conclude that a Dcmthat transformsthebasis a intothebasisb is also unique



Geometric interpretation of the transformation by Dems
TheDCMs as described here representthe transformation between two reference frames in
IR that are orthonormals It willbe shown later that this transformation is alwaysequivalentto a rotation about some axis by an angle Euler theorem
Let's considerhere porillustrationpurposes two reference frames that are displacedby
a singlerotation about the 2 axis

Êi É Usingtheprevious equation we can compute thematrix
Oo that transforms the coordinates of reference frame a tothereference frame b
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We can compute the samematrix por a rotation abouttheother axes leading to
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farthis kind of rotation matrix we have thefollowingproperties
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