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Abstract— A stand-alone inertial navigation system (INS)
yields time-diverging solutions due to errors in the inertial
sensors, which can inhibit long term navigation. To circumvent
this issue, a set of non-inertial sensors is used to limit these
errors. The fusion between additional data and INS solution is
often done by means of an extended Kalman filter using a state-
error model. However, the Kalman filter estimates can only be
used if the system is fully observable. This paper has analyzed
conditions to achieve full observability using as non-inertial
sensors a GPS receiver and an uncalibrated magnetometer with
an IMU mounted on a locally horizontal-stabilized platform
and with a strapdown IMU. The magnetometer data errors
was considered to be constant and the resulting vector was
added to the state space. The observability for all scenarios
has been verified when the system dynamics is piece-wise
constant, and the analysis has been carried out using concepts
of linear algebra to provide results that are geometrically
meaningful. The novel results obtained have been verified
by covariance analysis using a simulated INS. Also, it was
shown by simulations that the uncalibrated data fusion from
the magnetometer without proper processing would yield in
estimation divergence.

I. INTRODUCTION

A stand-alone inertial navigation system (INS) yields time-
diverging solutions due to errors in the inertial measurement
unit (IMU) sensors [1], that is accelerometers and rate-gyros
arranged in their respective orthogonal triads. In myriad ap-
plications, such errors can preclude the use of the navigation
solution in the long term. To circumvent this issue, a set of
non-inertial sensors often aid the INS by means of a state-
error model embedded in an extended Kalman filter [1]. The
state-error model employs a state vector that comprises posi-
tion and velocity errors, misalignment angles with respect to
the locally horizontal coordinate frame, accelerometer biases,
and rate-gyro drifts [1]. Consequently, observability analysis
is called for to ensure that the filter estimates are accurate.
Only with full observability the estimation error covariance
can decrease to a minimum in all state-error space directions,
and just then Kalman filter estimates can be used to correct
the INS errors and calibrate the inertial sensors [2].

Navigation becomes unfeasible when based on a low-
quality IMU and aiding sensors are lacking to limit the
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at ita.br

misalignment error. These errors can be bounded by a
magnetometer or a camera. The latter requires a pointing
apparatus and calls for image processing. Hence, for low
cost systems, the magnetometer is the usual choice of aiding
sensor, along with a pressure altimeter, and embedded in
many comercially available IMUs [3], [4].

A previous study of the authors investigated the observ-
ability of the INS error model with GPS/calibrated magne-
tometer aiding [5]. It turned out that such device can provide
measurements related to the position and misalignment errors
when the magnetometer raw data is compared to a embedded
geomagnetic field model. However, if this model is not
accurate enough or if magnetometer calibration has not
been executed correctly, then the usual measurement model
presented in [5] for the magnetometer will possess errors.
In such case, these errors must be estimated or it could
severely degraded the estimation accuracy as shown here by
simulations.

For the sake of modeling simplicity, it has been assumed
that the effect of the aforementioned errors in the magne-
tometer measurement model can be modeled as a constant,
called as the magnetometer bias. The observability analysis
of the INS error model when the magnetometer bias is added
to the space state is then carried out for an IMU mounted
on a stabilized platform and for a strapdown IMU. In both
cases, piece-wise constant dynamics for the INS error model
have been assumed as in [6], [7]. The theoretical results
was confirmed by covariance analysis using a simulated INS
with ideal sensors. Also, to cover more realistic situations,
two simulations were executed considering a non-ideal INS
and a time-varying magnetometer bias. In the first, the
magnetometer bias was neglected and, in the second, it was
estimated by the Kalman filter.

Sections II and III present coordinate frames and a glos-
sary of acronyms, respectively. The INS error model and
the sensors model are presented in sections IV and V, re-
spectively. The observability analysis is shown in section VI.
Simulations and results are presented in section VII. Finally,
the conclusions are written in section VIII.

II. COORDINATE FRAMES

The true local horizontal frame is used to represent the
INS errors. In the true vehicle position, its X-axis points
towards north, its Y-axis points towards east, and its Z-axis
points down. This coordinate system is thereafter indicated
with the l subscript.

The computed coordinate frame is defined as the local
horizontal frame at the position computed by the INS. It is



thereafter indicated with the c subscript.
The platform coordinate frame is defined as the local

horizontal frame computed by the INS. It is thereafter
indicated with the p subscript.

The body coordinate frame is defined as the inertial
sensors coordinate frame. It is usually assumed to be aligned
with the vehicle coordinate frame in strapdown IMUs or
aligned with the platform coordinate frame in IMUs mounted
on a stabilized platform. This coordinate frame is thereafter
indicated with the b subscript.

III. NOTATION AND ABBREVIATIONS

R Set of real numbers
DCM Direction Cossine Matrix
y Scalar
y Vector
A Matrix
diag(A B) Block-diagonal matrix constructed by the

matrices A and B.
In Identity matrix of size n.
[y]×x Matrix representation of the cross product

y × x.
Db

a DCM that rotates from the a coordinate
frame to the b coordinate frame.

ωab
c Angular rate of the a coordinate frame with

respect to the b coordinate frame repre-
sented in the c coordinate frame.

ρl Transport rate represented in the local hor-
izontal frame.

Ωe,l Earth’s angular rate represented in the local
horizontal frame.

Aspl Specific force represented in the local hor-
izontal frame.

∆Rl INS position error represented in the local
horizontal frame.

∆Vl INS velocity error represented in the local
horizontal frame.

Ψ Misalignment from the computed coor-
dinate frame to the platform coordinate
frame.

∇ Bias of the accelerometers.
ε Drift of the rate-gyros.
RN North-south radius of curvature of the

Earth.
RE East-west radius of curvature of the Earth.
Re Earth radius at the latitude of the vehicle.
ge Gravitation at the latitude of the vehicle.
λ Latitude of the vehicle.
h Altitude of the vehicle.
ωli

l Angular rate of the local horizontal frame
with respect to the inertial coordinate frame
represented in the local horizontal frame,
which is equal to Ωe,l + ρl.

IV. INS ERROR MODEL

INS errors are increasing and unbounded, thus navigation
can be seriously compromised in a long-term mission even

with high-quality inertial sensors [1], [8], [5]. To circumvent
this problem, a set of non-inertial sensors provides additional
information that can limit such errors. The fusion between
the non-inertial sensors and the INS solution is often ac-
complished by an extended Kalman filter using a state-error
model. The usual state vector for the INS error model is com-
posed of position and velocity errors, misalignment from the
computed coordinate frame to the platform coordinate frame,
accelerometers triad bias, and rate-gyros triad drift [1], [8].
Here, the magnetometer bias is also added as an additional
state as described in section V.

For the sake of completeness, the standard state-error
model for an IMU mounted on a stabilized platform and for
a strapdown IMU are presented in eqs. 1 and 2, respectively:

ẋ =


[ρl]× I3×3 03×3 03×3 03×3

ge α Γ I3×3 03×3

03×3 03×3 β 03×3 −I3×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

x

x =
[

∆RT
l ∆VT

l ψT ∇T
l εTl

]T
(1)

ẋ =


[ρl]× I3×3 03×3 03×3 03×3

ge α Γ Db
l 03×3

03×3 03×3 β 03×3 −Db
l

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

x

x =
[

∆RT
l ∆VT

l ψT ∇T
b εTb

]T
(2)

where ge = diag
(
−ge/Re −ge/Re 2ge/Re

)
, α =

[ρl + 2Ωe,l]×, β = [ρl + Ωe,l]×, and Γ = [Aspl,j ]×.
If the observables directly measure the position and veloc-

ity errors, then, by definition, those state vector components
are observable. The position error is dynamically coupled
only with the velocity error, which shows that the position
error dynamics fails to bring any unmeasured component into
the observable subspace. Hence, for the sake of simplicity of
the observability analysis, the position error component can
be neglected [9].

V. SENSORS MODEL

This investigation concentrates on INS error-state observ-
ability analysis when a GPS receiver and an uncalibrated
magnetometer aid the INS, which extends a previous study of
the authors [5]. A measurement model for each non-inertial
sensor is described next.

The GPS observables are assumed to directly provide
position and velocity errors. In practice, GPS raw data can be
post-processed to yield vehicle position and velocity in the
WGS84 ellipsoid coordinate frame as in a loosely-coupled
implementation. Alternatively, the raw data composed of,
for example, pseudo-ranges and Doppler shift between the
receiver and the satellites are employed in a tightly-coupled
implementation [8]. The GPS observables are then compared
to the INS solution to produce a measurement vector of the
state-error. Receiver clock errors have not been involved in
this investigation.



The GPS measurement equation under the aforementioned
assumption and neglecting measurement noise is presented
in eq. 3:

yGPS =

[
I3 03 03 03 03

03 I3 03 03 03

]
x (3)

The calibrated magnetometer model can be seen in [5],
although it is also presented next for the sake of complete-
ness.

The magnetometer observables are composed of the dif-
ference between the magnetometer raw data and the INS-
based local geomagnetic field vector. Considering Pinson’s
model [10], the DCM from the body coordinate frame to
the true local horizontal frame can be approximated by
neglecting second order terms as in eq. 4:

Dl
b = Dp

b ·D
c
p ·Dl

c ≈
≈ Dp

b · (I3×3 − [ψ]×) · (I3×3 − [∆θ]×) ≈
≈ Dp

b · (I3×3 − [ψ]× − [∆θ]×)

(4)

where ∆θk is the misalignment from the true coordinate
frame to the computed coordinate frame and ψ is misalign-
ment from the computed coordinate frame to the platform
coordinate frame. Thus, the calibrated magnetometer mea-
surement neglecting noise can be approximated by:

Bmag ≈ Dp
b · (I3×3 − [ψ]× − [∆θ]×) ·Bl

Dp
bBmag −Bl ≈ −[ψ]×Bl − [∆θ]×Bl

ycal
mag = [Bl]×ψ + [Bl]×∆θ

(5)

where Bmag is the raw magnetometer measurement and Bl

is the local geomagnetic field vector represented in the true
local horizontal frame, which is not accessible. The latter
is usually obtained from a geomagnetic field model using
the position solution either computed by the GPS or by the
INS. It is straightforward to check that Dp

b = I3 if the IMU
and the magnetometer are mounted on a stabilized platform.
Moreover, vector ∆θ can be related to the position error
represented in the local horizontal frame as in eq. 6:

∆θ =


0

1

RE + h
0

− 1

RN + h
0 0

0 − tanλ

RE + h
0

 ·∆Rl =

= C ·∆Rl

(6)

Finally, the calibrated magnetometer measurement can be
approximated by:

ycal
mag =

[
C · [Bl]× 03 [Bl]× 03 03

]
x = Hcal

magx
(7)

If the geomagnetic field model Bl is not accurate enough
or if the magnetometer calibration has not been executed
correctly, then the model ycal

mag in eq. 7 will possess errors.
Thus, the uncalibrated magnetometer raw measurement can
be approximated as follows:

Bmag ≈ Dp
b · (I3×3 − [ψ]× − [∆θ]×) ·Bl + δb (8)

where the component δb comprises the aforementioned er-
rors.

As mentioned before, it has been considered that the
error δb can be modeled as a constant, which was called
the magnetometer bias, because it is expected that this
vector varies slowly when represented in the body coordinate
frame for the situations of interest. However, later in the
simulations, this restriction is relaxed and the measurement
error δb is simulated using a time-varying function. Hence,
for the sake of modeling simplicity, the magnetometer bias
dynamics neglecting the model noise can be written as in
eq. 9:

δ̇b = 03×1 (9)

Additionally, the magnetometer bias can be added to
the space-state yielding to an extended INS error model
presented in eqs. 10 and 11 for an IMU mounted on a
stabilized platform and for a strapdown IMU, respectively:

ẋe =


[ρl]× I3×3 03×3 03×3 03×3 03×3

ge α Γ I3×3 03×3 03×3

03×3 03×3 β 03×3 −I3×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

xe

xe =
[

∆RT
l ∆VT

l ψT ∇T
l εTl δTp

]T
(10)

ẋe =


[ρl]× I3×3 03×3 03×3 03×3 03×3

ge α Γ Db
l 03×3 03×3

03×3 03×3 β 03×3 −Db
l 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

xe

xe =
[

∆RT
l ∆VT

l ψT ∇T
b εTb δTb

]T
(11)

The models in eqs. 10 and 11 without the position errors,
which were neglected, are thereafter called models 1 and 2,
respectively.

Thus, the uncalibrated magnetometer measurement equa-
tion can be written as follows:

yuncal
mag = Hcal

magx + Db
pδb

yuncal
mag =

[
Hcal

mag Db
p

]
xe

(12)

VI. OBSERVABILITY ANALYSIS

From the INS error dynamics in eqs. 10 and 11, one
concludes that it is a time-varying, linear system. The most
general way to check observability is to compute the observ-
ability Grammian [11]. However, it leads to such complicated
mathematical treatment that it is unfeasible for the addressed
problem.

In the literature, observability has been verified by three
main methods. The first is to analyze conditions that turn
the model into a time-invariant system, e. g. the vehicle
is stationary on the Earth’s surface, or to find an adequate
Lyapunov transformation that also leads to a time-invariant
system. Thus the observability can be checked by means



of rank computation of the observability matrix [11]. This
approach was used in [1], [12].

The second method is applicable to piece-wise constant
(PWC) systems. The observability analysis is still done by
rank computation, but it turns out that it can be greatly
simplified when a certain condition holds as is presented
in Theorem 1 [9]. For the INS error model 1, the system
can be considered PWC if the specific force is piece-wise
constant [6]. For the INS error model 2, the system can be
approximated by a PWC system if the specific force and
attitude with respect to the local horizontal frame are piece-
wise constant [7]. In this case, it is also expected that the
DCM Db

p will be PWC, since, during a maneuver segment,
it will vary only due to numerical errors and imperfections
of the inertial sensors. Thus, for sufficiently short segments,
the uncalibrated magnetometer measurement matrix in eq. 12
can be approximated as a PWC matrix.

The third method has tried to investigate observability
without assuming piece-wise constant dynamics [12], [13],
[14], [15], [16]. Since the observability analysis of time-
varying systems is not easily applied under general condi-
tions, several restrictions can be considered, for example,
constant specific forces and angular velocities, or a C-shaped
path.

For the sake of simplicity, the second method based on
assuming piece-wise constant dynamics has been preferred
here. It can be shown that under this constraint, an ob-
servability analysis with linear algebra concepts provides
sufficient conditions for full observability that hold for practi-
cally all situations of interest [5]. Additionally, the approach
yields a geometrical insight of the kinematics involved in
the observability analysis [5]. Let a vehicle move at constant
altitude according to three consecutive trajectory segments:
1) towards North; 2) in a C-shaped trajectory; and 3) towards
East. The composed movement leads to a time-varying INS
error model. However, if segment 2 is neglected, then the
above INS error models turn into PWC systems. Thus, if full
observability by the end of segment 3 can be proved, then,
by definition, the time-varying system composed of the three
segments is also fully observable. However, if full observ-
ability cannot be claimed from the analysis of the first and
the third PWC segments, then further analysis including the
second segment is needed. For practically all the situations
of interest, the vehicle can move in such a manner that the
INS error model will remain constant during certain time
intervals. Thus the analysis of just these segments using the
aforementioned method can provide sufficient conditions for
full observability [5].

A. Observability Analysis of Piece-Wise Constant Systems

A PWC system is defined as in eq. 13:

ẋ = Ajx + Bju

y = Cjx
(13)

where j ∈ [0, 1, 2, · · · ] and matrices Aj , Bj , and Cj are
constants for all j. Observability can be checked by rank

analysis of the total observability matrix (TOM), defined as
in eq. 14 for the first r + 1 segments [9]:

Q̄(r) =


Q̄0

Q̄1 · eA0∆0

...
Q̄r · eAr−1∆r−1 · . . . · eA1∆1 · eA0∆0

 (14)

with matrix Qi defined as in eq. 15:

Q̄i =
[

CT
i [CiAi]

T · · ·
[
CiA

n−1
i

]T ]T
(15)

where n is the state vector dimension.
The computation of the exponential matrices leads to

tedious and complicated algebraic calculations, but it can
be avoided if the following theorem holds [9].

Theorem 1: If:

NULL(Qj) ∈ NULL(Aj), ∀ j ∈ [0, 1, 2, · · · , r]

then the following holds:

NULL(Q̄(r)) = NULL(Q̄s(r))

RANK(Q̄(r)) = RANK(Q̄s(r))

where Q̄s(r) is the stripped observability matrix (SOM)
defined in eq. 16.

Q̄s(r) =
[

Q̄T
0 Q̄T

1 · · · Q̄T
r

]T
(16)

Thus the computation of the exponential matrices can be
avoided in the observability analysis.

Proof: See [9].

[9], [7] stated that the Theorem 1 holds for both models
in eqs. 1 and 2 when GPS measurements are available. On
the other hand, [5] showed that this theorem only holds for
these models if the specific force Aspl is not aligned with
the angular rate of the local horizontal frame with respect to
the inertial coordinate frame ωli

l at any segment. However,
to the best knowledge of the authors, the Theorem 1 validity
has not been checked yet for the models 1 and 2, in which
the magnetometer bias is added to the state vector.

For the model 2, the observability matrix for the j-th
segment can be written, after elementary row operations, as
in eq. 17:

Q̄j =

I3 03 03 03 03 03

GPS
03 Γj Db

l,j 03 03 03

03 Γjβ 03 −ΓjD
b
l,j 03 03

03 Γjβ
2 03 −ΓjβDb

l,j 03 03

...
...

...
...

...
...

03 [Bl]× 03 03 03 Db
p,j

Mag.03 [Bl]×β 03 [Bl]×Db
l,j 03 03

03 [Bl]×β
2 03 [Bl]×βDb

l,j 03 03

...
...

...
...

...
...


(17)

where the subscript j indicates a matrix at j-th segment.
Notice that matrix β, which is the cross product matrix of



the angular rate vector ωli
l , and the matrix [Bl]× are time-

varying. However, they can be approximated as constants for
a short term analysis if the terrestrial speed is small enough.

A vector x ∈ NULL(Q̄j) must satisfy the following
conditions:

(1) x1 = 03×1

(2) Γjx2 + Db
l,jx3 = 03×1

(3) Γjβ
n(βx2 −Db

l,jx4) = 03×1 n ∈ [0, 1, 2, · · · ]
(4) [Bl]×β

n(βx2 −Db
l,jx4) = 03×1 n ∈ [1, 2, · · · ]

(5) [Bl]×x2 + Db
l,jx5 = 03×1

(18)
If Aspl,j is not aligned with ωli

l , then condition (3) and
Theorem A.4 lead to βx2 −Db

l,jx4 = 03×1.
Furthermore, the following conditions must be satisfied if

the vector x also lies in the null space of the j-th segment
dynamics matrix Aj :

αjx1 + Γjx2 + Db
l,jx3 = 03×1

βjx2 −Db
l,jx4 = 03×1

(19)

It is straight forward to check that if x ∈ NULL(Q̄j) and
Aspl,j is not aligned with ωli

l , then x also lies in the Aj null
space. Hence, if this is valid for all j ≥ 0, then Theorem 1
holds. One should notice that this proof can be extended to
the model 1 by substituting Db

l = I3 and Dp
b = I3.

Hereafter, the assumption that Aspl,j is not aligned with
ωli

l for all j ≥ 0 is called assumption ?. Thus, if assumption
? holds, the observability analysis for the models 1 and 2
with GPS and uncalibrated magnetometer measurements can
be carried out by means of rank analysis of the SOM.

B. Observability Analysis for an IMU Mounted on a Stabi-
lized Platform

The observability analysis for the model 1, when GPS and
uncalibrated magnetometer measurements as in eqs. 3 and
12, respectively, are available, is hereafter presented. The
SOM for the first three segments can be assembled after
elementary row and column operations as in eq. 20.

Q̄
′

r(2) =

I3×3 03×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 −Γ0 03×3

...
...

...
...

...
03×3 03×3 03×3 −Γ0β

n−1 03×3

...
...

...
...

...
03×3 03×3 03×3 03×3 I3×3

03×3 03×3 03×3 −[Bl]× 03×3

...
...

...
...

...
03×3 03×3 03×3 −[Bl]×β

n−1 03×3

...
...

...
...

...
A1

A2



(20)

where:

Ai =
03×3 Γi − Γ0 03×3 03×3 03×3

03×3 03×3 03×3 −Γi 03×3

...
...

...
...

...
03×3 03×3 03×3 −Γiβ

n−1 03×3

...
...

...
...

...


(21)

Thus, if x ∈ NULL(Q̄
′

r(2)), then the following must
hold:

(1) x1 = 03×1

(2) x3 = 03×1

(3) Γiβ
nx4 = 03×1, n ∈ [0, 1, 2, · · · ], i ∈ [0, 1, 2]

(4) [Bl]×β
nx4 = 03×1, n ∈ [0, 1, 2, · · · ]

(5) (Γ1 − Γ0)x2 = 03×1

(6) (Γ2 − Γ0)x2 = 03×1

(22)
Since this analysis is only valid if the assumption ? holds,

thus condition (3) and Theorem A.4 lead to x4 = 03×1.
Additionally, condition (5) restricts x2 to be aligned with
Aspl,1 − Aspl,0. Likewise, condition (6) also restricts x2

and Aspl,2−Aspl,0 to be linearly dependent vectors. Thus,
if Aspl,1−Aspl,0 is not aligned with Aspl,2−Aspl,0, then
the conditions (5) and (6) can only be valid with x2 = 03×1,
which leads to a fully observable system.

Finally, the full observability of the piece-wise constant
INS error model for an IMU mounted on a stabilized plat-
form with GPS/uncalibrated magnetometer aiding is achieved
when:

• The specific force Aspl,j is not aligned with the angular
rate of the local horizontal frame with respect to the
inertial coordinate frame ωli

l at any segment j, j ∈
[0, 1, 2, 3, · · · ];

• There are at least three segments in which the specific
force difference from segment 0 to segment 1 Aspl,1−
Aspl,0 is not aligned with the specific force difference
from segment 0 to segment 2 Aspl,2 −Aspl,0.

One should notice that these are the same conditions to
achieve full observability in case that the GPS is the only
aiding sensor [9]. If the magnetometer is calibrated and the
bias can be neglected, then the full observability can be
achieved with just two specific force segments [5]. Hence, an
uncalibrated magnetometer does not help to improve observ-
ability, but the magnetometer bias can be made observable
by means of specific force changes if the IMU is mounted
on a stabilized platform.

C. Observability Analysis for a strapdown IMU

The observability analysis for the model 2, when GPS
and uncalibrated magnetometer measurements as in eqs. 3
and 12, respectively, are available, is hereafter presented. If
the strapdown IMU angular rate with respect to the local
coordinate frame, when represented in this same frame, is
zero, then the observability analysis can be carried out as in



the previous section [5]. Moreover, the INS error model of a
strapdown IMU can be also stimulated by rotational motion.
Thus additional excitation signals are available to increase
the dimension of the observable subspace. The analysis of
the scenario in which the IMU undergoes PWC attitude is
presented next.

The SOM for the first two segments can be assembled
after elementary row and column operations as in eq. 23:

Q̄
′

r(1) =



A0

09×3

...
03×3

...

A1

09×3

...
03×3

...
03×3 [Bl]× 03×3 03×3 Db

p,0

03×3 [Bl]× 03×3 03×3 Db
p,1

...
...

...
...

...


(23)

where:

A0 =



I3×3 03×3 03×3 03×3

03×3 Γ Db
l,0 03×3

03×3 Γβ 03×3 −ΓDb
l,0

...
...

...
...

03×3 Γβn 03×3 −Γβn−1Db
l,0

...
...

...
...


(24)

A1 =

03×3 03×3 Db
l,1 −Db

l,0 03×3

03×3 03×3 03×3 −Γ(Db
l,1 −Db

l,0)
...

...
...

03×3 03×3 03×3 −Γβn−1(Db
l,1 −Db

l,0)
...

...
...


(25)

Thus if x ∈ NULL(Q̄
′

r(1)), then the following must hold:

(1) x1 = 03×1

(2) Γx2 + Db
l,0x3 = 03×1

(3) Γβn(βx2 −Db
l,0x4) = 03×1, n ∈ [0, 1, 2, · · · ]

(4) (Db
l,1 −Db

l,0)x3 = 03×1

(5) Γβn(Db
l,1 −Db

l,0)x4 = 03×1, n ∈ [0, 1, 2, · · · ]
(6) [Bl]×x2 + Db

l,0x5 = 03×1

(7) [Bl]×x2 + Db
l,1x5 = 03×1

(26)
Conditions (3) and (5), assumption ?, and Theorem A.4

lead to (A) βx2−Db
l,0x4 = 03×1 and (B) (Db

l,1−Db
l,0)x4 =

03×1. Condition (B) together with Theorem A.5 claim that
x4 must lie in the Euler axis in which a single rotation
aligns the body coordinate frame in segment 0 (b0) with

the body coordinate frame in segment 1 (b1) [5]. This axis
is thereafter called eb0�b1. Likewise, x3 must also lie in
the same axis due to condition (4) [5]. Then condition (2)
leads to Γx2 = −Db

l,0x3, which constrains x2 and the
specific force Aspl to lie in a plane perpendicular to the
Euler axis eb0�b1 if x3 is not 03×1 [5]. In the same way, if
x4 is not 03×1, then condition (A) above constrains x2 and
the angular rate of the local horizontal frame with respect
to the inertial coordinate frame ωli

l to also lie in a plane
perpendicular to the same Euler axis eb0�b1 [5]. Hence, if
either the specific force Aspl or the angular rate of the
local horizontal frame with respect to the inertial coordinate
frame ωli

l is not perpendicular to the Euler axis eb0�b1, then
the components x2, x3, and x4 must all be 03×1 [5]. If it
holds, then it is straightforward to check that x5 must also
be 03×1, since both Db

l,0 and Db
l,1 are full rank matrices. In

such case, the INS error model with GPS and uncalibrated
magnetometer aiding is fully observable.

Finally, the full observability of the INS error model for
a strapdown IMU with constant specific forces undergoing
PWC attitude with GPS/uncalibrated magnetometer aiding is
achieved when:

• The specific force Aspl is not aligned with the angular
rate of the local horizontal frame with respect to the
inertial coordinate frame ωli

l ;
• The specific force Aspl or the angular rate of the local

horizontal frame with respect to the inertial coordinate
frame ωli

l is not perpendicular to the Euler axis in
which a single rotation aligns the body coordinate frame
in segment 0 (b0) with the body coordinate frame in
segment 1 (b1) eb0�b1.

VII. SIMULATION AND RESULTS

The five scenarios proposed to verify the foregoing theo-
retical results are presented as follows. All numerical simu-
lations were obtained by a simulated INS coded in Matlab.

The three first scenarios verified the INS error model
observability by covariance analysis. In these cases, the
accelerometers and rate-gyros have been considered ideal and
thus the model noise covariance has been set to zero. The
initial Kalman filter covariance and GPS and magnetome-
ter measurement noise covariance matrices are presented,
respectively, in eqs. 27, 28, and 29 with SI units [5]:

P0 = diag
(
10−6 10−6 10−6 10−4 10−4 10−4

10−6 10−6 10−6 10−10 10−10 10−10

10−3 10−3 10−3
) (27)

RGPS = diag
(
10−10 10−10 10−10

)
(28)

RMAG = diag
(
10−20 10−20 10−20

)
(29)

For the sake of simplicity, the local geomagnetic field
vector has been assumed to point towards north with 230.60
mGauss of intensity, which is the geomagnetic field intensity
at the city of São José dos Campos, Brazil. Additionally, the
magnetometer bias has been assumed constant as in eq. 30:

δb = [10 10 10]
T mGauss (30)



TABLE I: UAV trajectory for scenario 01

Specific forces
Start (s) End (s) N (m/s2) E (m/s2) D (m/s2)

0 20 0 0 -g
20 40 0 0.5 -g
40 60 0.5 0 -g+0.5
60 80 0 0.5 -g+0.5

The first scenario simulates an IMU mounted on a locally
horizontal-stabilized platform in a GPS/Magnetometer-aided
INS when the vehicle is subjected to the trajectory in Table I.
The standard deviations of the state estimation error are
presented component-wise in fig. 1.

The second and third scenarios simulates a position-
stationary strapdown IMU aided by GPS and magnetometer.
The IMU has been subjected to piece-wise attitude changes
in which the Euler angles that rotate the local coordinate
frame into alignment with the body coordinate frame (yaw,
pitch, and roll rotation sequence) are described in the figs. 2a
and 2b for the second and third scenarios, respectively. In
both cases, the angles have 0.5 s of rise time to avoid the
discontinuities of an instantaneously change. Additionally,
the standard deviations of the state estimation error are
presented component-wise in fig. 3 for the second scenario
and in fig. 4 for the third scenario.

The forth and fifth scenarios consider a more realistic
situation. In this case, the position error is added to the
Kalman filter and the various simulation parameters are
presented in Table II. The UAV velocities and angular
rates are described in the Appendix B. The magnetometer
bias for these both scenarios was simulated according to
fig. 2c. In the forth scenario, the eq. 7 was used as the
magnetometer measurement equation, thus the magnetometer
data were fused neglecting the bias. On the other hand, in
the fifth scenario, the measurement equation used for the
magnetometer data was eq. 12 and thus the magnetometer
bias was estimated by the Kalman filter. The estimation
errors of the position and velocity components for the forth
scenario are presented in fig. 5, and the estimation errors for
each state component for the fifth scenario are presented in
figs. 6 and 7.

A. Results Analysis

Figs. 1 to 4 confirm the theoretical results of the observ-
ability analysis.

In scenario 01, when an IMU mounted on a stabilized
platform is aided by GPS and uncalibrated magnetometer,
the INS error model achieves full observability only in the
third segment (t > 40s).

In scenarios 02 (fig. 3) and 03 (fig. 4), in which a strap-
down IMU aided by GPS and uncalibrated magnetometer
was simulated, it can be seen that the full observability is
achieved for scenario 02 at the third segment (t > 40s)
and for scenario 03 at the second segment (t > 20s).
This behavior is explained because, in scenario 02, the
Euler axis that rotates the body coordinate frame at the first
segment to the body coordinate frame at the second segment

points towards east. Since the IMU is stationary, both the
specific force and the angular rate of the local coordinate
frame with respect to the inertial coordinate frame lie in
the XZ plane of the local coordinate frame. Thus, these two
vectors are perpendicular to the Euler axis described before.
Hence, as the theoretical analysis predicted, this rotation
does not bring all state components to the observable sub-
space. On the other hand, the first rotation in scenario 03
has the Euler axis aligned with the vertical axis of the local
horizontal frame. Thus, the Euler axis is not simultaneously
perpendicular to the specific force and to the angular rate
of the local coordinate frame with respect to the inertial
coordinate frame, which brings all state components to the
observable subspace.

The comparison between the forth and fifth scenarios show
that if the magnetometer bias is high, then the magnetometer
data fusion without proper processing would yield in esti-
mation divergence. On the other hand, as one can see in
the scenario 05 results, even with the assumption that the
magnetometer bias is constant, the technique described here
successfully estimated a slowly varying magnetometer bias
and avoided the estimation divergence seen in scenario 04.

VIII. CONCLUSIONS

The observability of a linear INS error model has been
analyzed with aiding sensors that involve the use of GPS
and uncalibrated magnetometer when the vehicle trajectory
yields piece-wise constant error dynamics. The analysis dealt
with both a gyro-stabilized platform undergoing piece-wise
constant specific force segments and a strapdown IMU that
is also subjected to piece-wise rotation segments.

The magnetometer errors were modeled as a constant
vector that was added to the INS error model state space.
Thus, the theoretical analysis provided conditions to achieve
full observability based on IMU maneuvers. All the results
were confirmed by simulations.

Finally, the simulations verified that the estimation accu-
racy can be severally degraded if the magnetometer bias is
neglected. Also, it was verified that the Kalman filter can still
properly estimate the state vector even if the magnetometer
bias is time-varying with slow dynamics.

APPENDIX A
THEOREMS

The theorems on this appendix were already stated in [5],
but they are also presented here for the sake of completeness.

Theorem A.1: Let x ∈ R3 6= 03×1 and y ∈ R3 6= 03×1.
If [x]×y = 03×1, then x and y must be aligned.

Proof: The proof is trivial considering that [x]×y =
x× y.

Theorem A.2: Let x ∈ R3 6= 03×1 and y ∈ R3 6=
03×1. Thus NULL([y]×[x]×

n
) = NULL([x]×), n ∈

[1, 2, 3, 4, · · · ], iff x and y are not orthogonal.
Proof: Left to the reader due to lack of space.

Theorem A.3: Let x ∈ R3 6= 03×1 and y ∈ R3 6= 03×1

be two orthogonal vectors, then the set of vectors [x,x×y]
spans NULL([y]×[x]×).



Fig. 1: Scenario 01 - Standard deviations for observability analysis with an IMU mounted on a stabilized platform.

(a) Scenario 02 - Euler angles. (b) Scenario 03 - Euler angles. (c) Scenario 04 and 05 - Magnetometer bias.

Fig. 2: Euler angles for scenarios 02 and 03 and magnetometer bias for scenario 04.

Proof: Left to the reader due to lack of space.
Theorem A.4: Let x ∈ R3 6= 03×1 and y ∈ R3 6= 03×1

be two non-collinear vectors. If [y]×[x]×
n
v = 03×1 holds

for all n ∈ [0, 1, 2, · · · , L], L ≥ 1, then v = 03×1 is the
only possible solution.

Proof: The proof is trivial considering Theorems A.1,
A.2, and A.3.

Theorem A.5: Let x ∈ R3 and Db
a and Dc

a be the DCMs
from the a coordinate frame to, respectively, the b coordinate
frame and c coordinate frame. If (Db

a−Dc
a)x = 03×1 holds,

then x lies in the Euler axis in which a single rotation aligns
the b coordinate frame to the c coordinate frame.

Proof: The condition can be rewritten as x = Da
bD

c
ax.

Thus x is a vector that has the same representation in the b
and c coordinate frames, then x must lie in the Euler axis in
which a single rotation rotates the b coordinate frame into
alignment with the c coordinate frame.

APPENDIX B
UAV TRAJECTORY AND ANGULAR MOVEMENT FOR

SCENARIOS 04 AND 05

The UAV trajectory is composed of several segments with
a distinct, constant specif force during each one. They are
described in Table III.

The IMU attitude evolves as described in eqs. 31 in terms
of the Euler angles that rotate the local coordinate frame into
alignment with the body coordinate frame (yaw, pitch, and
roll rotation sequence).

ψ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

1.7

)
rad

θ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

1.7

)
rad

φ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

0.85

)
rad

(31)



TABLE II: Simulation parameters for scenarios 04 and 05.

Sensors

∇
[

3 3 3
]T mg

ε
[

1000 1000 1000
]T ◦ /h

Accelerometers
covariance (R∇)

diag
(

1 1 1
)

(mg)2

Rate-gyros
covariance (Rε)

diag
(

500 500 500
)

(◦/h)2

RGPS diag
(

81 81 81 0.1 0.1 0.1
)

SI units2

Rmagnetometer diag
(

(2 · 10−5)2 (2 · 10−5)2 (2 · 10−5)2
)

Gauss2

Covariance of
relative position
measurement

5 · diag
(

81 81 81
)

m2

GPS and magne-
tometer data fre-
quency

1 Hz

INS
Initial position 23◦12′ S 45◦52′ W
Initial altitude 700 m
Initial velocity

[
0 0 0

]T m/s
Initial alignment TRIAD algorithm
INS solution
sampling rate
(tins)

0.01 s

Kalman filter
Feedback start 95 s
Q, t < 95 s diag( Q∗t<95 s 4 · 10−10 4 · 10−10 4 · 10−10 ) SI Units2

Q, t ≥ 95 s diag( Q∗t≥95 s 4 · 10−10 4 · 10−10 4 · 10−10 ) SI Units2

Q∗t<95 s 1/50 · tins ·


03 03

Db
l 03

03 −Db
l

06

 ·
[

R∇ 03

03 Rε

]
·


03 03

Db
l 03

03 −Db
l

06


T

SI Units2

Q∗t≥95 s 1/150 · tins ·


03 03

Db
l 03

03 −Db
l

06

 ·
[

R∇ 03

03 Rε

]
·


03 03

Db
l 03

03 −Db
l

06


T

SI Units2

Initial covariance diag
(

502 502 502 22 22 22 0.05 0.05 0.05 0.09 0.09 0.09 0.015 0.015 0.015 1 1 1
)

SI Units2

Initial estimate 018×1 SI units

TABLE III: UAVs trajectory

Specific forces
Start (s) End (s) N (m/s2) E (m/s2) D (m/s2)

0 30 0 0 -g
30 70 +3 0 -g
70 110 0 +3 -g
110 150 +3 +3 -g
150 190 0 0 -g-3
190 240 0 0 -g
240 280 -3 0 -g
280 320 0 -3 -g
320 360 0 +2 -g
360 500 0 0 -g
500 520 0 +2 -g
520 540 -2 0 -g
540 560 -2 -2 -g
560 600 0 -2 -g
600 660 0 0 -g
660 720 0 2 -g
720 800 -2 0 -g

.



Fig. 3: Scenario 02 - Standard deviations for observability analysis with a strapdown IMU subjected to piece-wise rotations
about Y-Z-X axes.

Fig. 4: Scenario 03: Standard deviations for observability analysis with a strapdown IMU subjected to piece-wise rotations
about Z-Y-X axes.

One should notice that this trajectory and angular move-
ment yield in a fully observable system according to the
theoretical results in this paper.
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