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para estimacéao e controle em 3 eixos da atitude de satélite
testado em simulacdo de plataforma posicionadora.

Um filtro de particulas Rao-Blackwell foi projetado e seu deABSTRACT
sempenho investigado mediante simulacdo de uma mesa
3 eixos usada para validacdo de algoritmos embarcados
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rivada temporal filtrada das medidas vetoriais foi propostaq g ;rement based on a low-pass filtered time-derivative of

para melhorar o desempenho do filtro. Filtros de Kalman efe vector measurements has been proposed to improve the
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sido propostos uma grarlde vaned.ade de f||_tros para resplv filters have been proposed in the past to tackle the prob-
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angular de_ satélites, ,no melhor conheC|mepto dos aumre%/é)ctor observations, to the best knowledge of the authers th
presente filtro de particulas Rao-Blackwell € uma nova abo, resent Rao-Blackwellized particle filter is a novel apptoa

dagem que reduz significativamente a carga computaciongl,.; qjanificantly reduces the computational load, praside

prové uma taxa de convergéncia atraente e preserva, com SHattractive convergence rate, and successfully presdree

cesso, o desempenho apresentado pelo filtro de particulas [Sgn‘ormance of the standard particle filter when subjeated t
mum quando submetido a disturbios. disturbances

Rao-Blackwellized particle filter has been designed asd it
ormance investigated in a simulated three-axis #atell
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KEYWORDS: Nonlinear filtering, Rao-Blackwellized particle The previous investigations mentioned above have analyzed
filter, extended Kalman filter, unscented Kalman filter, nonthe respective algorithms from the point of view of initial

linear dynamics. convergence rate, and the conclusions were that the @articl
filter yields a faster convergence rate than EKF and UKF.
1 INTRODUCTION However, to the best knowledge of the authors, filter perfor-

mance under high disturbance torques has not been investi-

Nonlinear estimation has been investigated here based-on 8&ted because its occurrence is very unlikely in actualespac
tended Kalman, unscented, and particle filtering to gauge tRPPlications. But the satellite testbed on the ground mayine
performance tradeoff among attitude and angular rate est® deal with this kind of disturbance, and it turned out tmat i
mation accuracy, robustness to uncertain initial condiio Such a circumstance conventional PF algorithms with a low
and model mismatch, and computational workload. This ifdumber of particles can cause estimation divergence (Ghaga
vestigation has been motivated by an experimental setup dd Waldmann, 2010). One way to circumvent this problem
the LabSim at the Instituto Nacional de Pesquisas Espacidfsto reinitialize the particles once the disturbance hambe
(INPE), where a 3-axis, air-suspended table has been instfigtected. However, a much less computationally demand-
mented as a testbed for designing and testing satellite a#fid approach based on the Rao-Blackwellization technique
tude estimation and control algorithms, and systems iategr(Akashi and Kumamoto, 1977) with a fairly small number of
tion. The apparatus has been used as an educational tooP@iticles is proposed here that shows a disturbance refecti
demonstrations to undergraduate and graduate students freemparable to that of the conventional, plain PF with a large
ITA (Instituto Tecnolégico de Aeronautica), and stirred uglumber of particles.

such an interest that inspired the present effort to siraidat
model of a similar testbed for the evaluation of nonlinedir es
mation algorithms and their feasibility for actual spacplap
cations, specifically the attitude control system of a lastc
university satellite.

The present investigation extends previous work on PF
for the simulated satellite testbed (Chagas and Waldmann,
2010a; Chagas and Waldmann, 2010) but now with the main
focus on a Rao-Blackwellized PF. The procedure reduces the
variance of Monte Carlo estimates and is applicable when,

Recent published work on applying particle filtering, ex.conditioned on a set of states, the remaining ones are lin-
tended and unscented Kalman filtering (Chagas and Wal@i2r and Gaussian (Doucet, 1998). Liu et al. (2007) have in-
mann, 2010; Chagas and Waldmann, 2010a) to the aforemé/§stigated a similar approach known as the marginalized PF
tioned simulated satellite testbed has shown that the sequépplied to attitude and rate-gyro bias estimation with eect
tial Monte Carlo method performs significantly better ineas OPServations and also resorting to rate-gyro measurements
an unexpected disturbance occurs and yields faster convEtere, the state vector has been partitioned into two groups:
gence. The state vector spans a 7-dimension space, and tA0§ with attitude-related components and the other with an-
a high number of particles is needed to achieve a good a@ular rate components. Samples have been taken from the
proximation to the minimum mean square error (MMSE) essecond group with nonlinear dynamics, whereas the compo-
timate (Ristic et al., 2004). Hence, the heavy computation8€nts in the first group, which are also nonlinear, are esti-
burden of the particle filter prevents a real-time implenaent mated using an Extended Kalman filter. Therefore, unlike

is not conditionally linear, but the Rao-Blackwellizatiap-

Crassidis and Markley (2003) have proposed an unscentptbach becomes applicable by use of some mild approxima-
Kalman filter (UKF) with rate-gyros and magnetometer meatons. Moreover, a significant reduction of the number of par
surements as an alternative to the use of the standard ¢ixles to attain an estimation accuracy much similar to tifiat
tended Kalman filtering (EKF) approach to a similar problenthe standard particle filter has been attained by concatenat
of spacecraft attitude and angular rate estimation, and veing pseudo-measurements of the angular rate to the measure-
fied improved convergence with respect to the EKF. Chengent vector. The pseudo-measurements have resulted from
and Crassidis (2009), using the same measurements, héwe-pass filtering the numerical time-derivatives of theve
proposed a particle filter (PF) with a technique called protor measurements. Though suboptimal, the present approach
gressive correction and verified that the initial convergeen becomes extremely attractive due to its reduced computa-
rate was much better than EKF and UKF for large initialtional workload, which yields the Rao-Blackwellized PF a
ization errors. Finally, Carmi and Oshman (2009) have prgaotential algorithm for this space application.
posed a fast PF with a novel initialization and some addi-
tional steps that help to reduce drastically the number of paln Brazil, most of the previous investigations on estimatio
ticles needed with respect to the conventional, plain R al and control of satellite attitude were carried out at INRIE}s
called bootstrap filter. as Lopes et al. (1998), Walter and Pinto (1999), Silva et al.
(2004), Conti et al. (2007), Castro et al. (2008), Louro et al
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(2007), and Duarte et al. (2009). Optimal nonlinear filter- Zy z,
ing in GPS/INS integration was studied by Carvalho et al.

(1997). Regarding nonlinear estimation of satellite @i,

Rios Neto et al. (1982) proposed an adaptive Kalman filter

Santos and Waldmann (2009) compared an extended and > Yq
unscented Kalman filter with vector observations from a Sur Table External
sensor and magnetometer for a low-cost satellite (ITASAT) Xq Magnetometer (M2)

attitude and angular velocity estimation. Garcia et al1®0
developed and compared two different unscented Kalman fil-
ters that were based on quaternion and Euler angles for atti-
tude parameterization.

Figure 1: Table reference (left), and desired frame (right).

Z4=24
The system model is presented in Section 2. The control
strategy is briefly described in Section 3. Section 4 costain
information about the filters that have been designed far thi Yh
investigation. Finally, simulation results and conclusi@re Yd
presented in Sections 5 and 6.
Xd Xy,

2 SYSTEM MODEL

Figure 2: Horizontal frame.
The actual table mass unbalance and corresponding pendu-
lous effect due to gravity torque has been neglected in the
simulated testbed (Fig. 1). This inconvenience can be cip.1 Coordinate Frames
cumvented by careful balancing of the table mass prior to
application of the results presented here. Sun sensors ®hree coordinate frames have been used to derive an ad-
board an orbiting satellite provide a reference direction f equate model. The first one is the body-fixed coordinate
attitude estimation and control. This reference directias frame{Xp, Yb,Z,}, which is attached to the table with tidg
been simulated in the simulated testbed by use of acceleroaxis perpendicular to the table plane and pointing upward.
eters measuring the local vertical given by the reactiohéo t The second coordinate frame is the desired reference frame
gravity vector, and assuming that the horizontal accetamat {Xq4,Yq,Zq}, which is aligned with the external magnetome-
was negligible. Hence, one requirement for the control syser sensitive axes. Non-orthogonality in the external neagn
tem was that it should align the table with the local horizabnt tometer axes has been neglected. Bo#ndd frames are
plane. Hence, the table has been instrumented with two ashown in Fig. 1. The rotation sequence has been parame-
celerometers with mutually orthogonal sensitive axeslfgra terized by Euler angleg, 6, andg, respectively about body
to the table surface. Additionally, one 3-axis magnetomet@xesZy, Yy, andXy, thus rotating a vector representation from
on board the table has been used to provide a measurementhef desired reference frame to the body frame. Note that
the required additional reference direction, namely tlwalo here the inertial coordinate frame neglects the Earth’a-rot
geomagnetic field, which has also been measured by an don rate.

ternal, horizontally aligned, ground-fixed 3-axis magmete ) )
ter. The actuator suite is composed of a momentum wheel f6f€ desired reference frame has been useful for comparing

azimuth control (Carrara and Milani, 2007) withif telative ~ the on-board magnetometer measurements with respect to
to a desired direction, and compressed air nozzles for bn-dhe external magnetometer data. Additionally, a horizonta
torquing the table towards alignment within 0®lative to coordinate frame Xy, Yh, Zn} results from rotating the body-
the local horizontal plane. Notice that the focus is on menli fixed, table coordinate frame with the abovey and—6 Eu-

ear attitude and angular rate estimation. Therefore a ecenveer angles abouXy,, andY, axes, respectively. The horizontal
tional control strategy has been devised assuming linegrizffame when rotated by anglg about the positive upward,
dynamics and pole placement with feedback of the state edffcal vertical yields the alignment with the desired refere
mate. The system model has been already developed in Cff&me. This is shown in Fig. 2.

gas and Waldmann (2010a), and is again presented here for

the sake of completeness. 2.2 Sensors

Attitude estimation relies on three sensors on board the air

suspended table: two accelerometers and one magnetometer.
The accelerometers are used to estimate the local vertidal a
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thus determine the misalignment between the table and tdg. The pneumatic actuators are assumed to be controlled
horizontal coordinate frame. Data from the on-board magnéy a pulse width modulation (PWM) signal that determines
tometer, called M1, should be compared with the output dhe duty cycle. Additive white noise has been included in
the external magnetometer, called M2, to determine the dhe actuator model to account for the small turbulence at the
ror with respect to the reference azimuth direction aboet thnozzles when torquing the table. Three parameters arelcalle
local vertical. for in such a model: the torque magnitude that is applied
on the table by the nozzles when the actuator is on, the fre-
The two accelerometers measure the components of Spjancy of the PWM carrier, and the actuator noise variance.
cific force along thex, andY, axes, respectivelAspi and e yeaction wheel has been modeled as in Sidi (1997) for
Asp, 2, due to the reaction to gravity in the body-fixed, tablqhe f validati o ;
purpose of validating estimation and control algorghm

coordinate frame, as in Eqg. 1: . :
q This ground-truth model has included wheel motor dynam-

Asph1 0 —9.81-sin(6) ics, current and voltage limits, viscous friction, backfem
Aspp, = | Aspy2 | =Dy 0 | =(981.-cog0)-sin(p) | (1) and the maximum angular rate limit. The usual dead-band
Aspy3 9.81 9.81-cog6) - cog ) found in such wheels when crossing zero speed has not been

d o _ ) considered since it was assumed that the wheel is used for at-
whereDj, is the direction cosine matrix (DCM) that trans- it de control with a significant non-zero angular rate. een
forms a vector representation from the desired referengge actuator actually behaves as a biased momentum wheel,
frame to the table coordinate frame. Accelerometer bias anghq such simplifying assumption does not affect the general
measurement noise have not been considered in Eq. 1, Rytof the results. The corresponding block diagram can be
were taken into account when validating and comparing th&sen in Fig. 3, wherg, is the wheel inertialms is the ta-
performance of the closed-loop control law with feedback of e inertia about th&, axis, Kmw, Kuw » Rmw and B, are
state estimates computed by the distinct estimators. electromechanical wheel parameteFg,is the commanded

Both magnetometers have been assumed to be located Sh%rlgue, andi is the actual torque.

that the local magnetic field vector is practically the same gne wheel angular rate with respect to the air-suspended ta-

both locations. Otherwise, comparing their respective-mege (xac Mmeasured by an on-board tachometer is composed
surements would not be useful for estimating the desired ref; w\évg and additive white Gaussian noise.

erence azimuth, thus compromising accuracy when estimat- ™

'ng Euler angley. 2.4 The Dynamics Model

The magnetometer on board the air-suspended table outputs

a vector measurement)1y,, which calls for representation The dynamics model has been adapted from Sidi (1997).
in the horizontal coordinate frame. The representation h&Oth the table inertia matrix without consideration of tiee r

been carried out with the estimated Euler angdemd6 to ~ action wheel,,, and the reaction wheel inertia matfig,
approximate the DCNDP, as in Eq. 2. are shown in Eqgs. 4 represented in the body-fixed table coor-

dinate frameb.
M1p ~ DP-M1p 2
Imb1 Imp12 Imp13
Imp=1{ Imb21 Imp2 Imb23 (4a)
Imb31 Imb32 Imb3

One can compar®1l, and M2, and use the cross product
operation to estimate diw), thus yielding Eq.3:

sin(y) =M24 - M1y 1 —M241-Mlp 2 3)
whereMxgy y is they-th component in the coordinate frame | | |
of the unit-norm geomagnetic field measurement vector pro- wbl ‘wbl2 ‘wb13
duced by thex-th magnetometer. Therefore, the sensor suitdwp = | wb21  lwbz  lwb2s (4b)
described here allows for the measurement of the three Euler hubs1 lwpaz  lwb3
angles that rotate the desired reference coordinate fratoe i
alignment with the air-suspended table frame. The table angular rate vector with respect to the inertéaatie
wg', and the reaction wheel angular rate vector with respect
2.3 Actuators to the tablew‘,{,”b are shown in Egs. 5 represented in the

coordinate frame:
A set of three actuators has been considered to control the
air-suspended table about its three axes: two pneumatic ac- ) ) ) T
. bi __ bi bi bi 1T wb __ wh
tuators for theX, andY, axes, and one reaction wheel for wy = [ Wp1 Wpo Wp3 } wp = { 0 0 wy3 } (5)
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Figure 3: Reaction wheel block diagram.

Following the Newtonian formulation, the dynamics modeR.5 Model State and Measurement Vectors
is represented in the table coordinate fraorees in Egs. 6:
Analyzing the model equations in the previous section, a
A Imba+wbi Imb12+lwbi2 Imbia - state vector iR’ has been defined: the three Euler angles
b | — that rotate from the desired reference frame to the bodyfixe

Wh 2 Imb21tlwp21 Imb2+lwb2 Imb23
bl | o | Tl | table frame, the three compone_nts t_Jf the angular rate vecFor
“3 mb31T wb31 Imb 327 wh32 b3 (6a) Of the table with respect to the inertial frame represented i
0 the body-fixed coordinate frame attached to the table, awd th
- 0 _wgi % Hp+Tep+Tap reaction wheel speed with respect to the table. Statiddrct
T YUs ' ' torque in the reaction wheel yields a steady state pointing e
lwb,3 ror about thez, axis. Therefore, the integral of the pointing
b b Us error shown in Eq. 10 has augmented the state vector as seen
h3 = —Gps+ Tos (6b) in Eq. 11:

with Tqp as the disturbance torqu&.y, being the control t )

torque output by the pneumatic actuators and shown in Eq. ¥ /0 (Wrer —W)dt — &= trer — W

Hyp, is the total angular momentum of both the table and the N

reaction whgel as in Eq. 8, ang is thg real torque acting y — [ ® 0 Y Q’Bfl ngz Q’Bjs w\évg € (11)

on the reaction wheel as shown in Fig. 3. Mass unbalance

torque due to gravity has been neglected because the testdég reference state is given by Eq. 12. Thus, the con-

is balanced to align its center of mass with the table air-bealroller should align the table with the local horizontal péa

ing. and likewise the on-board magnetometer measurements with
those of the external magnetometer component-wise.

(10)

T

Tc,b = [ Tc,b,l Tc,b,2 0 ] (7)

Xet=[0 0 0 0 0 0 0 0] (12)

_ wb
Ho = (Im+ o) - wp' + I~ ®) Recalling Eq. 1 and Eq. 3, the measurement vector concate-
The table angular rate vectmﬁ' relates to attitude Euler an- nates accelerometers, magnetometers and tachometesdata a

glesy, ©, andg and respective time derivatives according tan Eq. 13.
the kinematics in Eqgs. 9:

[ Asp, 2
9=, +sin(g) tan(8) ), + cog ) tan( ) f " St
8 = cog @), — sin(@) y= - " 981 -
HO) 0z — SIN@)g ©) 53 M2q2-M1n1 - M2q1-Mlno
l]—' — Sm((p) Q)gi + co i(p) (*)b 4 ' ’wtac ' ' (13)
cogB) 2" cog@) 3 - _
cog0) sin(p)
Hence, the ground-truth model has been constructed using B sin(0)
Egs. 6, Eq. 8, and Egs. 9, and the reaction wheel dynamics - sin(y)
model seen in Fig. 3. o
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3 CONTROL STRATEGY The ground-truth model has not considered any approxima-
tion; it has been built using Newton’s laws and as such does
The main focus is to investigate and compare the perfofot involve any modeling noise. However, implementation
mance of nonlinear estimators. Consequently, a straighirtifacts contribute to a mismatch between the groundtrut
forward control technique based on state feedback has be@@del and the one embedded in the estimators. These errors,
used. Firstly, the system has been linearized in the vicofit including those arising from numerical round-off, have hee
Xref. As aresult, the horizontal plane dynamics given by theherged into a virtual, additive, white noise sequence appro
state componenty, 6, «f; andwf', has become decoupled imated by a Gaussian probability density with zero mean and

from the vertical dynamics embedded in the remaining stagcovariance that should be tuned in the estimator.
components. Such decoupling allowed for the design of two

separate control laws for the horizontal and vertical dynam .
ics, respectively. Then, the closed-loop polesin Eqs. 14 ha4'l Extended Kalman Filter (EKF)
been located to avoid actuator saturation while still yiredd

an acceptable settling time. Regarding Eqgs. 16 augmented with the corresponding addi-

tive noise, the EKF performs the linearization of the dynam-

Phorizontal= | —1 -1 —15 —15 ] ics about the updated state estimate, whereas the linganza
o . . of the measurement equation is about the propagated state

Preriical = [ ~0.2+]0.2 ~02-j02 —0.15 ] A4 estimate (Ristic et al., 2004). The continuous-discrete ap

Additionally, control torque about each horizontal axis ifroach for the EKF has been used here (Gelb, 2001). Being
turned off when the corresponding Euler angle error norr@ slightly different algorithm with respect to the usuallyul

is less than 0.25 Control is switched back on when suchdiscrete-time implementation, the approach offers moee ad
error norm is higher than 025 This avoids high-frequency duate, improved performance in continuous systems than the

switching in actuators when the system is near the referenfiély discrete approach because propagation is done by di-
state. rectly integrating the nonlinear continuous-time modelaq

tions as in the continuous Kalman-Bucy filter using, for ex-
ample, the #-order Runge-Kutta numerical integration al-
gorithm with a fixed time step, whereas the measurements

This section describes the implementation of the estir\slatorare discrete in time. Propagation is shown in Egs. 17:

4 ESTIMATORS

which assumed model simplifications. Disturbance torques t

have been neglected, inertia matrices considered diagonatik—1 = Xk—1jk—1+ f(x,u)dt

i.e., without inertia products, and the reaction wheetltiiwic bt

and back-emf have been neglected, Tig= us. Puk-1=Pxk-1k-1t a7
Tk

The continuous mathematical model, omitting model and + (J+ (6 U)P(t) +P(t)Jr (x,u)" +Q) dt

measurement noise, can be written as in Egs. 15: 1

x=f(x,u) y=h(x) (15) whereJ; (x,u) is the Jacobian matrix of the functidf.) at

the updated estimate and control péitu), andQ is the
whereu is a vector of control torques for both of the pneu-continuous-time model noise power spectrum density matrix
matic actuators and the reaction wheel, &hilis a function The update step is performed as usual, and the above EKF
concatenating Egs. 4 to Eq. 10 while considering the aforéras been implemented previously in Chagas and Waldmann
mentioned simplifications. (2010a).

The PF algorithms call for a discrete-time system model. The
discretization is carried out, omitting model and measure:-
ment noise, as in Egs. 16:

2 Unscented Kalman Filter (UKF)

The UKF uses the unscented transform to achieve improved
Xk = fa(Xk_1,Uk_1) estimation accuracy relative to the EKF when Eqg. 15 aug-

_ (16)  mented with additive noise is a highly nonlinear model of
Yk = h(X«) .

system dynamics and measurements. The unscented trans-

whereA denotes the sample time. Functifyixx_1,ux—1), form calculates a set af-points that are propagated using
which transfers the system from instakt- 1 to instantk  the nonlinear model and measurement equations to yield es-
using the sample timA, can not be computed analytically timates of the mean and covariance of the stochastic state
due to the nonlinear behavior of the continuous dynamicsector (Ristic et al., 2004). Such estimates better approxi
Therefore it has been approximated using the Runge-Kuttaate the linear minimum mean square error estimate in com-
4th_order algorithm with a fixed time step. parison with the EKF estimation. Unlike the latter, it does
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not call for computation of Jacobians. Nevertheless, conthe need for many particles. As a result, many patrticles are
puting o-points requires a great amount of computational efealled for, and sampling is performed based just on the prop-
fort, which yields a heavier computational burden than thagation of the dynamics model embedded in the filter. Poor
EKF in almost every practical situation. The UKF has beeperformance can occur in case disturbances occur though.
also implemented in Chagas and Waldmann (2010a) with tiéwus, a pseudo-measurement of angular rate has been used
continuous-discrete approach described in Sarkka (2007). as a means of reducing the required number of sampling par-

ticles while maintaining estimation accuracy. This angula
4.3 Rao-Blackwellized Particle Filter (RBPF) rate pseudo-measurement has been produced by means of

differentiating and low-pass filtering the measurementequ
Particle filters can be inefficient when dealing with hightion, and then particle samples of the angular rate with b hig
dimensional systems because a large number of particlééelihood have been generated. A method to achieve this
is needed to represent the posterior probability densi§o2al has been inspired by previous work on angular rate es-
(Murphy and Russell, 2001). Rao-Blackwellization is a techlimation from vector observations (Bar-ltzhack, 2001) &nd
nique to exploit the state-space structure and thus redhece #/S€d here with a slight modification as described next.

number of particles. It is well-suited when the system Oly"I'aking the time derivative of the first, second and third com-

namics is conditionally Gaussian. That is, when conditibne . )
i onents of the measurement vector, recalling the attitude
on some of the state components, the remaining ones are IEn—

ear and Gaussian so that the latter can be analytically eso%]tzmitgsslnlgq(.sgéa?g;{(i)r:nAEq.er%&ii?&)-& and Eq. 13 one
mated by the Kalman filter (Doucet, 1998). as- P PP '

Chagas and Waldmann (2010) verified that standard PF al % bi
gorithms impose a huge computational burden because the d)}z “’gil
sample from the entire state space to solve this problems, thu rre D(9.6,9)- ‘*’giz
becoming unfeasible in actual space applications with the| dy; Wy 3
presently available computational resources. Unforiigat dt

(19)

the satellite simulation testbed model can be conditignall p(¢ g, y)
Gaussian only when conditioned on a high-dimensional sub- .
space, which does not decrease the computational burden cos(@) cog6) 0 _sm(e)
significantly. However, it turns out that the RBPF can be = 0 g;%(g;)gg;ﬁg ;sgc(p()p)c g‘;ﬁe))
successfully used with a significant improvement in perfor- 0

mance when some approximations are made. cos(6) cog(®)

Firstly, the integral of the azimuth pointing error has beer:,— hese derivatives can be approximated as in Eq. 20:

removed from the state vector, and the integration has been _ d
) . . Yik —VYik-1 Y1
performed for the purpose of control implementation with a QA ot
simple rectangle rule and the azimuth estimate. So the-state | yox—VYox-1 | _ | dy 20
space has been divided into two subspaces spanned, resp%'(bK - A T (20)
tively, by r andz as presented in Egs. 18. Y3k —¥Y3k-1 %
- A dt
r=[e 6 ] . -
. . _ T (18) Wwherey; is thei-th component of the original measurement
z= { oy why Wy vector in Eq. 13 atinstamt Bar-Itzhack (2001) has proposed

» the use of a pseudo-inverse function to estimate the angular
Chagas and Waldmann (2010) verified that the standard REe vector fromypk. Here, it is the inverse ob(q,8, ),

with a regularization step does not provide accurate estimgnich always exists when the Euler angles are subject to
tion of angular rate even when a large number of particles aregp @0, < 90°. One should note that estimation of
used. The measurement equation in Eq. 13 shows that i gyler angles is needed for pseudo-measurement compu-
subspace spanned by the body angular rates is not direcflfion, and hence the most recergubspace estimates have
measured and a large number of particles would be needggegp, employed for that purpose. Finally, the angular rate

to sample that subspace and achieve the required estimatii}ior estimation has been obtained as in Eq. 21:
accuracy. The need for sampling the importance density with

many particles is caused by the angular rate being abseg} — Dfl(fk_llk_l) Yok (21)
from the measurement vector. Consequently, information is

not available in the measurements to guide the sampling trheref,_y_1 is the updated estimate in theubspace at in-
wards the subspace regions with high likelihood and obviastantk— 1. Finally, the pseudo-measurement vector in Eq. 20
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is low-pass filtered to attenuate noise arising from the mumedynamics embedded in the subspace, but has been ap-
ical time-derivatives (Franklin et al., 1997) as in Eq. 22:  proximated by an EKF. This approach is widely used and
corresponds to approximate the probability density fuorcti
Otk = <1_ A) Ot 1+ ig,k (22) (P.D.-F)p{rk| zg‘:&,yo;k} by a Gaussian distribution with pa-
A+t ' A+T rameters calculated by the EKF (Giremus and Tourneret,

whereA is again the sample time ands the filter time con- 2005). Hence, a set wilN EKFs ?ﬁs been constructed, with

stant. Finally, the augmented measurement vector has be#f EKF using functiofy (ri—1,2,7,) as the model of the
partitioned as in Eq. 23: subspace dynamics.

T Ther subspace has been selected for estimation with the sets
Yek=[ Yk Y2k Yak ] =he(re) (23) ©Of EKFs due to the dynamics model in Egs. 24. One can see
Yok = [ ‘:’{k Yak ]T = Hy,z that thez subspace dynamics does not depend orr thgh-
space. Hence, sampling tkesubspace depends on just the
whereHj; is the 4x 4 identity matrix and the measurementparticles set at the past instant and on the measurememt at th
function h,(rg) can be easily constructed from Eq. 1 andoresent instant. On the other hand, samplingrtbabspace
Eqg. 3. Notice that the measurement equation offseib- would need the particles set at the past instant, the measure
space actually has a dependence onrtsabspace because ment at the present instamind thez subspace state compo-
of the coupling with attitude seen in Eq. 21. However, th@ents at the past instanthe mathematical treatment in such
correct mathematical treatment for this dependence in tteecase would increase the complexity of the estimation algo-
PF algorithm would raise filter complexity to an undesirableithm. Hence, the estimation is carried out by a Monte Carlo-
level. As a simplifying assumption, such coupling will bebased method in thesubspace, and by a Kalman filter-based
neglected here. method for the remaining state components inrteabspace

] . (Doucet, 1998).
With the past results, the discrete model and measurements

equations can be written as shown in Eqgs. 24. The importance density has been chosen as the optimal
one that minimizes the variance of the weights and is use-
Zx = f2(zk—1,Uk-1) +Wzk ful to reduce the total number of particles (Doucet, 1998):
Me=fr(r-1,z-1) +Wrk 2V ~ p(z| 2)_1,yox). Sampling from this P.D.F. can be
Y2k = HzZk + Vzk (24) easily done using theorem 1.

Yrk = hr () +Vik

T T 4T Theorem1 One can sample from the PD.F
Ye=[ Yrx Yok |

p(zk|z(()’;|)(71,yo;k) by sampling from the P.D.F

where,wzx ~ N(0,Qz) , Wrk ~ N(0,Qr), Vzk ~ N(O,R;),  P(2Z«| Z|(<J_)1,yz,k)-

vrk ~ N(0,Ry) and all these random vectors are considered

to be white and mutually independent. One can see tha)or See Appendix B. O
fz(z¢-1,Uk-1) is obtained from discretization of Egs. 6, and

fr(rk-1,2k—1) from discretization of Egs. 9 with the Runge-

Kutta algorithm, as mentioned earlier in Egs. 16. One can see from Eq. 23 that the measuremgnbn which

. . () . . .
Applying the PF algorithm with particle samples taken jus{he importance densitp(z| .;,Yzk) is conditioned lin-

from z , the minimum mean square error (MMSE) estimat@arly relates to the state partitiap, and the measurement
can be é\pproximated as in Eqs. 25 (Doucet, 1998): noise is assumed additive and Gaussian. It can be proven

that this P.D.F is the one presented in Eq. 26 (Doucet, 1998):

E{rclyox}~ ) w) - E{rg| Zéjj)o)/o:k} p(z | ZI(<J—)1’yZ-k> =N(zgm, =)
=1 '
N (25 »=(Q'+HIR;Hy) (26)
~ J J . .
Eladyord > 3 W= m} =3 (Qz 2z, u 1) + HI Rz Yyz)

whereN(x;m,R) is the Gaussian probability density with
meanm and covarianc® evaluated ax.

wherezl((j> is the j-th particle in thez subspacewﬂ; is the

associated weight, and is the total number of particles.

Notice that the expectatioB{r | zéjj)(,yo;k} cannot be an- The particle weights update is carried out as stated in theo-
alytically computed because of the nonlinear model of theem 2.
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Theorem 2 The particle weights update step can be approx-
imated by Eq. 27:

~ G 1'le< 1-N (yZ.k;Hzfz(Z&jjl,Uk 1), ZQZH-zr+Rz)'

N ek Hik P2 Hik P aHik T+ Re)

(27)

with G, being a normalization constant that does not de-
pend on vﬂ[ 1 rk“i , the predicted estimate for the k-th in-

stant of the j-th EKF using all measurements up to thelk

instant with covariance matn?l((“z 1 HHQ = ah(;fr) )
) k-1

andyrk = yrx —hr (?I(QJIZ—l) + Hs,k)fl(qli—l'

Proof: See Appendix C. O

The standard, plain PF (i.e. the bootstrap filter) algorithm
performance degrades when the dynamics model noise level
is low, because after a few time steps all particles tend to
concentrate in a very tight region in the state-space (isti

et al., 2004). Here, all modeling noise is caused mainly by
model mismatch and numerical errors. Such noise has a very®
small covariance and the standard PF performance degrades
significantly. To avoid such a hurdle, a movement step has e
been added after every resample stage using the Metropolis-
Hastings algorithm (Chilb and Greenbeg, 1995; Ristic et al.
2004). Finally, the full algorithm can be described:

Initialization: ®

e FORj=1:NDO

- z(()D ~ pPo(z), wherepo(z) is the prior probability
of thez subspace at instant 0.

- ré\o ~ Po(r), é‘é = Pp, wherepg(r) is the prior

probability of ther subspace at instant 0 afg

is the initial EKF filter covariance. Notice that the
prior probability does not need to be Gaussian. It
can be, for example, an uniform distribution that
covers the entire subspace, buPy must be set
accordingly to avoid divergence.

e END FOR °
At every instank:

e Construct the pseudo-measurement, using Eq. 20,
Eqg. 21, and Eg. 22, and assemble the measurement vec-
tory,x of thez subspace as in Egs. 23. °

e FORj=1:NDO

—praw 2 ~ p(zc| 2}, y2k) = N(zami, 3),

where = (Q; Y +HIR;H,) L and
mi =2 (Q; (21, uk_1) + HIR; 1Y)

- Usefl((jfl‘kfl, Pf(’;)l‘kfl andzi@1 to execute the pre-

diction step of thej-th EKF to obtain?!))

0 Klk—1
j
Pui-1-

and

2(1) (i)
= Userlg 1 P

step of thej-th EKF to obtairr‘l((‘jll andPl(({,i.

andy;k to execute the update

— Update thej-th particle weight using:

H,QMH] +Ry):
+Ry)

(yzk;Hzfz(Zf(j_)lyuk 1),H
MR LA T

o ahe(r)
-

PV |
Wy = Wy 1'

0 Hz = laxa
F=Fk-1

Py )

Yrk = Yrk—hr(Fyi_q rkkk—1

END FOR

(WM | = NORMALIZE({W,}N.,)
ComputeNerr = (3N, (wi)2)

IF Neft < Nthres

— Execute the resample step with systematic re-
sample (Ristic et al., 2004) using the normalized

weights to achieve a new set of particé@_%lrI< and
respective EKstQ& and Pm).

— Execute the movement step using the Metropolis-
Hastings algorithm (Ristic et al., 2004) to achieve

a new set of particlezf(j). Notice that the EKFs

remain untouched, because they only depend on
particleszf(‘jl, which remain the same in the move-
ment step.

END IF

Pk = z'j\‘zlwlj(~ff<{&, which is the approximation of the
minimum mean square error estimate for treibspace
as in Egs. 25 (Murphy and Russell, 2001).

k= z'j\‘zlwlj( . zf(j), which is the approximation of the
minimum mean square error estimate for #sibspace
as in Egs. 25 (Murphy and Russell, 2001).
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4.4 Plain Particle Filter (PPF) about the Euler axis that is related to the attitude estonati
error at each iteration as in Eq. 31. It has been used to as-

A standard, plain PF (PPF), which samples from the entirgertain the attitude estimation accuracy of each filter. The

state space, has also been designed just to gauge the getond, the angular rate error, computes the norm of the an-

formance of the proposed RBPF. The standard PF has begiflar rate vector estimation error at each iteration as in Eq
implemented using systematic resample (Ristic et al., 004>,

composed with a regularization step to increase the diyersi
of the patrticles (Ristic et al., 2004). More details abous th Oerrork = acos(l _trace(ﬁb,T -Dg) _ 1) 31)
particular implementation can be found in Chagas and Wald- = 2 dklk 2

mann (2010).

Qerrork = / (@i — wi) T (@it — wi) (32)

5 SIMULATIONS AND RESULTS where f)g‘k‘k and DY are the estimated and ground-truth

DCM, respectively, at instark that rotate from the body-
fixed coordinate frame attached to the simulation tabledo th

The simulations have been carried out using simulatioretabi€feérence coordinate frame, aag, andwy are the estimated
parameters available from (Carrara and Milani, 2007), an@nd ground-truth table angular rate vector, respectialy-

the XSens MTIG inertial measurement unit (IMU) specificaStantk. These two metrics have been computed at each itera-
tion sheet as shown in Table 1. Both table and reaction whelén over a large numbevl of Monte Carlo simulations, and
ground-truth inertia matrices have included inertia prdu  finally were employed to obtain the mean and standard devi-

to account for a residual mass unbalance in the table asse®{ON-

bly and uncertainty regarding the reaction wheel inertia pa

rameters. Equation 28 shows the measurement noise cov@i3 Results
ance matrix used in EKF, UKF and PPF:

5.1 Parameters

5 ) 5 All simulations have been carried out using Matlab in a
R= diag( Ofccel  Taccel 4 Omag 02 ) (28) controlled Linux environment (ArchLinux distribution vt
9.812 9812 50C% tac 2.6.36 kernel) to ensure that the relative computational bu

wherediag(.) means a diagonal matrix. For the RBPF, th%}n of each algorithm can be properly estimated. I_:or the
measurement covariance matrix has been partitioned accofd<F» UKF and RBPF scenarios, 100 Monte Carlo simula-

; ; ns have been carried out spanning a time interval frem 0
ing to Egs. 24, and the used values are shown in Egs. 29, wilR i .
the appropriate SI units. to 10Gs. For the PPF, only 15 Monte Carlo simulations have

been performed because of the heavy computational burden
4.0‘%1ag and the available time. The ground-truth initial state vec-
> (29) tor has been kept fixed and is given in Eq. 33 with S| units.
For the Kalman filter-based simulations, the filter initiatie
mate has been set equal to the initial state vector plus a ran-

Each filter needed tuning of its model noise covariance &m vectorinwhich each componentwas a random Gaussian

o2 o2
Ry = diag( accel accel
9.812 9812 50C?

R,=diag( 001 001 007 o7 )

shown in Egs. 30, with the appropriate Sl units: variable with zero mean and variancd @Sl units). For the
PF-based simulations, the initial value for each parties h

Qekr =0.5-1gxs been sampled from a uniform distribution, whose limits for

Qukk = 0.45-Ig.g the angles have been set frerd5° to +45° , and—10° /sto

Qppr = diag( 55 5 100 100 100 71)00) 104 (30) +10°/sfor the angular rates.

Qrrepr=0.05-13.3 xo=[25 -30 20 3 -3 -2 0 0]"-1. (33)

QzrepF = 0.01-14.4

The number of particles in the PPF has been set to 500,0
and the RBPF has been simulated in distinct instances wi
15, 500, and 5,000 patrticles.

gen applied at timé = 45s with a 0.3s duration to inves-
igate filter robustness and convergence rate. The distgirbi
torque vector is given in Eq. 34.

cgd: unexpected, deterministic pulse disturbance torque has

5.2 Filter Performance Tap=[ —07 07 03]  N.m (34)

Two metrics have been defined to gauge filter performanc&he proposed RBPF has been simulated with 15, 500, and
The first, the angle error, computes the rotation angle err& 000 particles, and the corresponding figures of merit in
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Table 1: Simulation parameters.

Symbol Description ‘ Value
General
A Sample time 0.01s
1 Time constant of the low-pass filter in the RBPF pseu j‘b.z s
measurement
o o _ _ 0.4954/2  0.4954.0.1 —0.4954.0.1
| Tl et ety degring e oo Wl 59| 501 ooz 04005 | o
| —0.4954-0.1 0.4954-0.05 04954
_ o _ _ [ 15.103%2 15.10°%.01 -15.10°%.01
b (F)er((aj?:gtc‘)enf;/;rrfeel inertia matrix represented in the table co- 15.103.01 15.10%2 15.103.0.05 kg.m?
| -15.103.0.1 15-10%.005 15.10°°
B, hg;:::crr:rignetic field represented in the reference coord{- 08729 04364 02182 ]T .500 mGauss
Sensors
€accel | Accelerometer bias 1 mg
02..e1 | Accelerometer measurement noise variance (0.002//30)? (m/s?)?
Ofac Tachometer measurement noise variance 0.005 V2
Gﬁqag Magnetometer measurement noise variance (0.5/10)? (mGaus¥?
Actuators
Tpmax | Pneumatic actuator maximum torque output 01 N-m
o3 Pneumatic actuator torque noise variance 104 (N-m)?
fp Pneumatic actuator PWM carrier frequency 2 Hz
wi® « | Reaction wheel maximum angular rate 4,200 RPM
Twmax | Reaction wheel maximum torque 0.05 N-m
Kmw Reaction wheel motor constant 0.023 N-m/A
icsat Reaction wheel current saturation TWmax/Kmw A
Rmw Reaction wheel motor resistance 10 Q
Vesat | Reaction wheel voltage saturation Rnw-icsat V
Ke, pi Proportional gain in reaction wheel PI controller 10 V/A
lc,pi Integral gain in reaction wheel PI controller 2V/(A-s)
Bw Reaction wheel viscous friction coefficient 4.9-10°° N-m-s/rad
Kvw Reaction wheek, back-emf coefficient 1072 V-s/rad
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Egs. 31-32 for each scenario have been plotted in Fig. 4. Teere estimated by a set of Extended Kalman filters. For that
improve the analysis, a zoom of the angular rate error norpurpose, approximations have been employed to decrease the
in steady state has also been plotted in Fig. 5. The comemputational burden and to render the problem analyyicall
parison between EKF, UKF, PPF, and the proposed RBRFactable. In such a case achieving the minimum mean square
can be found in Fig. 6 and Fig. 7. Due to lack of spacegrror estimate is not granted though when the number of par-
additional results regarding the EKF, UKF and PPF can h&les tends to infinity. Additionally, a significant rediar in
found in Chagas and Waldmann (2010a) and Chagas atiee number of sampling particles has been accomplished by
Waldmann (2010). Finally, Table 2 summarizes the comaugmenting the measurement vector with low-pass filtering
putational burden results for each scenario. Figure 4 araf the time-derivative of the vector observation. This aug-
Fig. 5 show that increasing the number of particles fronrmented pseudo-measurement has guided the sampling of the
500 to 5000 has not improved RBPF attitude estimationangular-rate subspace, thus significantly decreasinguime n

but provided a slightly improved angular rate estimation irber of particles needed while simultaneously maintainig e
steady state. Figures 6 and 7 show that even with a very Idimation accuracy.

number of particles, the RBPF achieved an attitude determi-

nation accuracy that is comparable to the PPF with a huél’é‘le proposed RBPF yields a superior cost-benefit ratio than
number of particles. Furthermore, the angular rate estim¥2€ PPF, because the former provided an estimation accuracy
tion accuracy with just 15 particles is statistically thenga akin to the latter, and yet called for a much alleviated com-
as the PPF, but Kalman-based methods perform angular r@gational workload. However, by keeping a low number of
estimation better than the RBPF and PPF algorithms. Tiarticles the RBPF angular rate estimation accuracy has re-
convergence rates of the PF-based estimation methods Pisfted inferior to those of the EKF or UKF. Moreover, both
and RBPF were better than that of the Kalman filter-basédBPF and PPF have produced attitude estimation far more

algorithms, with PPF yielding a slightly faster convergencrObUSt to a torque disturbance. Therefore, when dealiniy wit
than RBPE. space applications that resort to sensors that measurer vect

observations and demand accurate angular rate control com-
posed with the sound rejection of a disturbance torque - all

Table 2: Computational burden comparison. of that without incurring in a heavy computational burden -,
Algorithm Comp. Burden (relative to EKF) then the results reported here indeed encourage the use of
EKE 1.00 the EKF or UKF running in parallel with the proposed RBPF

with a small number of sampling particles.
UKF 4.24
PPF (500,000 p. 12,354 Comparing with previous work on related applications, the
RBPF (15 p.) 303 particle redqctiqn u;ing the RBPF proposed here for the in-
RBPF (500 p.) 728 tended appl_lcatlon is truly outstanding. Carml and Oshman
(2009) studied the problem of spacecraft attitude and angu-
RBPF (5,000 p.) 722 lar rate estimation using vector observations, which ig/ver

similar to the problem presented here, and stated that the
plain particle filter would need at least ZWO particles to
provide an acceptable estimation accuracy. Then, they de-
signed a different particle filter with modifications of thné-i

A Rao-Blackwellized patrticle filter has been designed to est'-al ;ampllng and add|t|or_1a_| steps to decrea_se th_e number of
timate satellite attitude and angular rate composed with %a_rtlcles needed for attam_mg.adgquate. estimation acgura
.. 10 just 1 800. For the application investigated here, Chagas

stra|ghtf_orwar_d, Imearlze_d state feedback law for attétu and Waldmann (2010) verified that this number ought to be

control in a simulated, air-suspended table. The table uses . S
X . . -much higher for the PPF to avoid divergence when a large
two pneumatic actuators for alignment with the local hori- : . . ) ;
: . . torque disturbance is applied - indeed, such is a benchmark
zontal plane, and one reaction wheel for azimuth alignmen. : . .
. . Or gauging estimator performance that has not been consid-
The sensors consist of two accelerometers to estimate-the |0 ) .
) L ered so far in previous work to the best knowledge of the
cal gravity vector direction, and two magnetometers - ong . g ;
. authors. Since the proposed RBPF with just 15 particles has
on board the table, and the other fixed to the reference co-, . oo .
. ) . ; achieved a comparable estimation accuracy with respect to
ordinate frame to provide azimuth alignment about the lo; ) . ;
: ; . that of the PPF on Section 4.4 when subject to a torque distur-

cal vertical. The RBPF implementation proposed here f

r . )
the particular application partitions the state-space fnio QDance and in steady state, it should be clear that the prdpose

groups: one formed by the attitude Euler angles and anothRBPF algorithm shows a superb gain in terms of alleviating

r .
with the angular rates. Particle sampling has been carred ot%e computational workload.

just from the angular-rate subspace, whereas the Euleegangl

6 CONCLUSIONS
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Figure 4: Figures of Merit for RBPF using 15, 500 and 5000 patrticles.

RBPF - 15 particles Scenarios Comparison
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Figure 5: Zoom of steady state angular rate estimation error for
RBPF. Figure 6: Comparison between the proposed scenarios - Attitude
determination.

Since the computational load of the RBPF with 15 particles is

only about 3 times higher than that of the usual EKF, and has

a disturbance rejection very similar to the PPF, its implame in this scenario with both filters, the computational loadl wi
tation has been considered feasible for this space apiplicat still be lower than that of an UKF. Having the EKF and RBPF
with adequate computational resources. Angular rate astinrunning in parallel will demand the generation of a normally
tion quality can be improved with an architecture in whichdistributed sequence though, a feature that is not reqbiyed
one EKF runs in parallel with the RBPF to accurately prothe UKF. Finally, an elaborate analysis of filter convergenc
vide, respectively, angular rate and attitude estimategnE demands further investigation.
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Scenarios Comparison A|SO'

— RBPF (15p) ]

§ . e re) = Ng) =
EKE P(Yrk | Zok: Yok—1:Yzk:Tk) = P(Yrk | Tk) (B.2)
PPF = P(Yrk | Zok—1,Yok-1,Yzk k)

Applying the total probability theorem and using
Egs. B.1 and B.2:

P(Yrk | Zok:Yok—1,Yzk) =
=/ [P(Yrk | Zok, Yok—1,YzkTk)-
RB

-P(ri | Zox,Yok—1,Yzk)|drk =

g g

Angle Rate Error [rad/s]

(B.3)

= /]R3 [P(Yrk | Zok—1,Yok—1,Yzk,Tk)-

: i ; A . . ; A i -P(rg | Zok— K drg=
0 10 20 30 40 5 60 70 80 90 100 P(rkc| Zox-1,Yox-1,Yzk)] dri
Time [s] = P(Yrk | Zox-1,Yok-1,Yzk)

Figure 7: Comparison between the proposed scenarios - Angular ~ Finally the theorem can be proved by applying Bayes rule to
rate determination. the importance density thus yielding:

P(2Zk | Zok-1,Yok) = P(Zk | Zok-1,Yr0k, Yz0k) =
APPENDICES _ P(Yrk | Zok: Yok-1,Yzk) - P(Z | Zox-1,Yok-1,Yzk) _

P(Yrk | Zok—1,Yok-1,Yzk)
_ P(Yrk | Zok-1,Yok-1,Yzk) - P(Zk | Zok—1,Yok-1,Yzk)

A PROOF OF EQUATION 19

Differentiating the first three measurement vector compo- P(Yrk | Zok-1,Yok-1,Yzk)
nents with respect to time one gets Eq. A.1: = Pp(Z | Zok—1,Yok—1,Yzk) = P(Zk | Zk-1,Yzk)
(B.4)
dn
dt —sin(8) cog )8+ cog8) cog P)@
% _ cog6)0 (A1) C PROOF OF THEOREM 2
dys sin(y)w For the optimal importance density, the weights are updated
dt using (Doucet, 1998):
Equations 9 describe the kinematics relating the time deriv W) = Ci_1-W)_, - p(y | Zéj;&,l,yo:k—l) (C.1)

tive of the Euler angles and the table angular rate vectdr wit

respect to the inertial frame. Equation 19 is proved by meargsi.rStlyantice that,.when conditioned @R, yr is indepen-
of substituting the kinematics in the Eq. A.1 and writing in a ent ofy, . Hence:
compact matrix form.

P(Yk | Zéj;&_laYO:kfl,rk) = P(Yrk Yzk | Zéj;&_l,yo:kfl, re) =

B PROOF OF THEOREM 1 = Pk | 20 1.Yok-1.Tk) - P(Vrk | Zok_1-Yor-1.7)
C.2
Firstly, using Bayes rule and process model present at (©2)
Egs. 24, one can see that: Also, using Bayes rule and process model present at Egs. 24:
() 1T =
P(ri | Zox, Yok-1,Yzk) = P(Yzk | Zi-1:You-1:T)
_ P(z| Zox-1,Yok-1,Yzk: k) - P(Tk | Zok-1,Yok-1,Yzk) _ ~p(ri| Z(()Jj)(_layo:k—byz,k)'p(yLk | Z(()J;&_]_»yo:kfl) B
p(Zk | ZOZk*LyOZkflayLk) p(rk | ZE)J:LZ,]_yyOZk—l)
_ p(zk | Zkflaylk) -p(r | ZOZkflayOkalvyZ,k) _ () a0
P(Z | Ze_1,Y2) _ P(rk | ZO:kflayO:k—l()‘; P(Yzk | Zgi_1,Yok-1) _
= P(rk | Zok-1,Yok-1,Yzk) _ P(ri | Zoje1-Yox-1)
BL = p(Yak| 2 1.Yox-1)

290 Revista Controle & Automagao/Vol.23 no.3/Maio e Junho 2012



Using the total probability theorem in Eq. C.1:
i _ wi () _ .
Wy = Ckfl W1 R3 p(yk | 2541, YOk—1, rk)
p(r | Zg{&,l,YO:kﬂ)} drg
Applying Eq. C.2 in Eqg. C.4, one gets:
= Ck—l'W|j(,1/R3 {p()’z,k | ZE)J;L)(,laYO:k—er)'
PYrk | Zop1.Yok-1.7) - P(ric | Zgh_1Yox-1)| dri
Finally, using Eq. C.3in Eg. C.5:
= Ck71~W|j<_1/RB [p(yZ,k | Z(()J;E(_laYO:k—l)'

_1Yok-1,Tk) - P(rk | Z(<3j;|)<,1aYO:k—1)} dry

-plyr,
= Cio1-W_; - P(Yak | Z0h 1, Yok-1):
'/]Ra [p(Yr,k | 2900 1, Yok-1,T):

p(r | Zéj;f(_l,yo:kfl)} dry
=Ck1 -W|j<,1' P(Yzk | Z(()j;l)(,yYO:k—l)'

[ [P 70 Pk 26 1.Yoxc2)]
Doucet (1998) showed that:

P2k | 2),) =
H,QH] +Ry,)

p(yz,k | Z(()j;l)<_17)/0:k—1) =

= N(Yzii Hof (2 Up 1),

Also, the P.D.Fp(ry | zéj:f(_l,yo;k,l) is approximated by a
Gaussian density with mean and covariance computed by the

set of extended Kalman filters:
P(r| ZE)J;;)(,l,yO:k—l) ~ N(rg; ff(f&,l, Pﬁf&,l)

It can be easily seen that:

P(Yrk | rk) = N(yrx; hr(rk),Rr)

Using this formulation, the integral in Eg. C.6 cannot be an-

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

alytically solved due to the nonlinear functibi(r). To cir-
cumvent this problem, this function is linearized abiq&#il

as follows:

he (ri) = hy (fl((flz_l) + H§J|<) (re— f|(<\J|1—1)

)

(C.10)

WhereH£I = arr)

. Hence, the P.D.F. expressed in

i)

k-1
Eqg. C.9 can be approximated by:
P(Yrk | rk) = N(Yrk: e (re),Rr) =
— 1 _
== xp( 5 (Yrk—h (r)" er(yr,k—hr(rk))>m
— 1 T
== oxp( 5 (v~ ala DY -1 )

er(yrk h (7 ;(<||l 1)~ 5 rk\k 1 )) =

H
E'GXD( (Yrk— rkfk) (Yrk— §rk))=

= N(Vrk: Hﬁ_ﬁrm Rr)

(C.11)

Jek = Yex—he(Pe ) +HRPR ,  and
1

== ((2m3-det(R,)) 2.

Therefore, using Eq. C.7, Eq. C.8, Eq. C.9, and Eq. C.11, the

weights calculations in Eq. C.6 can be approximated by:

where

i~ j
Wi~ Ce-1-Wy_q-

N(Yzk; HZfZ(Z|(<j_)17 Uk-1), HZQZH-ZI— +Ry)-
./]R3 N(Tri Hg,jk)rkv Re)-N(r; fﬁ\jﬂ_y Pf({li—l)drk

With this approximation, the aforementioned integral can

be evaluated. Firstly, one should consider the Chapman-
Kolmogorov equation applied to the prediction step of the

standard Kalman filter, shown in Eq. C.13 (Arulampalam

et al., 2002):

(C.12)

P(Xk | Yok—1) =

= /]R“ P(Xk | Xk—1,Yok-1) - P(Xk-1 | Yok—1)dXk—1 (C.13)
- /]R“ POk [ Xk-1) - P(Xk-1 | Yok-1)dXk-1

Both P.D.F. in the above integral are rewritten in the stashda
linear Kalman filter problem as follows (Ho and Lee, 1964;
Anderson and Moore, 1979):

/]R” N (Xi; FiXi—1, Q) - N(Xk—1; Rk 1jk—1, P k1) BXk—1 =

= N(%k; Ficfi— 11, FkPi k- 1F + Qi)
(C.14)
Performing the following variable substitution in Eq. C.14

(i)

Xk — Yrk, Fk—H;, Xk1—Trk, Qk— R,

o =(1) (i)
Xi-1k-1 = T P11 = Py g
Yrk — hr(rk) —Vrk, N— 3
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the vector dimensions remain consistent and the integral @arrara, V. and Milani, P. G. (2007). Controle de uma mesa

Eqg. C.12 can be calculated: de mancal a ar de um eixo equipada com giroscopio e
roda de reacddy Simpdsio Brasileiro de Engenharia
/ N(Frk; HE_jQrk,Rr) : N(rkifﬁfﬁ_l’Pﬁ{&—l)drk = Inercial, Rio de Janeiro, RJ, Brasil.
R3 T (C.15)

Carvalho, H., Moral, P. D., Monin, A. and Salut, G. (1997).
Optimal nonlinear filtering in gps/ins integratioli; EE

. . . . Transactions on Aerospace and Electronic Systems
Finally, applying the result expressed in Eq. C.15in Eq2C.1 33(3): 835-850.

~ j)a j j j),T
= N(FriaHelPgk 1 Hi P aHike T +Ro)

one gets:
Castro, J. C. V,, Souza, L. C. G. and Kuga, H. K. (2008).
W|j< ~Ci 1 'le<71' Experimental angle and velocity estimation of a satel-
_ ) T lite simulator, V Congresso Nacional de Engenharia
“N(yzi Hzf2(z 21, uk-1),HZQH; +Rz)- Mecanica Salvador, BA, Brasil.
'/Rs N(yr,k;H£7J;<)rk7Rr) : N(rk;Fﬁ‘J&,yPH&,l)drk = Chagas, R. A. J. and Waldmann, J. (2010). Nonlinear filter-
j _ () - ing in a simulated three-axis satellite attitude estinmatio
= Ci1-W_1-N(Yzk Hof2(z 71, Uk-1), HQH; +Ry): and control testedJournal of Aerospace Engineering,
Nk Hﬁ,jﬁfﬁfﬁ_l» Hﬁik) Plifll—ng,jlz’T YRy Sciences and Applicatior2§2): 37-49.

(C.16) Chagas, R. A. J. and Waldmann, J. (2010a). Nonlinear fil-
tering in a simulated three-axis testbed for satellite atti
tude estimation and control|| Congresso Nacional de
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