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RESUMO

Filtro de partículas Rao-Blackwell com medidas vetoriais
para estimação e controle em 3 eixos da atitude de satélite
testado em simulação de plataforma posicionadora.
Um filtro de partículas Rao-Blackwell foi projetado e seu de-
sempenho investigado mediante simulação de uma mesa de
3 eixos usada para validação de algoritmos embarcados de
estimação e controle de atitude de satélites. Medidas veto-
riais foram utilizadas para estimar atitude e velocidade an-
gular e, adicionalmente, uma pseudo-medida baseada na de-
rivada temporal filtrada das medidas vetoriais foi proposta
para melhorar o desempenho do filtro. Filtros de Kalman es-
tendido e unscented convencionais e um filtro de partículas
comum foram comparados com a abordagem Rao-Blackwell
aqui proposta para avaliar a acurácia da estimação de atitude
e velocidade angular, a carga computacional, a taxa de con-
vergência quando existem incertezas nas condições iniciais e
a sensibilidade a distúrbios. Embora, no passado, já tenham
sido propostos uma grande variedade de filtros para resolver
o problemas de estimação em 3 eixos de atitude e velocidade
angular de satélites, no melhor conhecimento dos autores o
presente filtro de partículas Rao-Blackwell é uma nova abor-
dagem que reduz significativamente a carga computacional,
provê uma taxa de convergência atraente e preserva, com su-
cesso, o desempenho apresentado pelo filtro de partículas co-
mum quando submetido a distúrbios.
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ABSTRACT

A Rao-Blackwellized particle filter has been designed and its
performance investigated in a simulated three-axis satellite
testbed used for evaluating on-board attitude estimation and
control algorithms. Vector measurements have been used to
estimate attitude and angular rate and, additionally, a pseudo-
measurement based on a low-pass filtered time-derivative of
the vector measurements has been proposed to improve the
filter performance. Conventional extended and unscented
Kalman filters, and standard particle filtering have been com-
pared with the proposed approach to gauge its performance
regarding attitude and angular rate estimation accuracy, com-
putational workload, convergence rate under uncertain initial
conditions, and sensitivity to disturbances. Though a myriad
of filters have been proposed in the past to tackle the prob-
lem of spacecraft attitude and angular rate estimation with
vector observations, to the best knowledge of the authors the
present Rao-Blackwellized particle filter is a novel approach
that significantly reduces the computational load, provides
an attractive convergence rate, and successfully preserves the
performance of the standard particle filter when subjected to
disturbances.
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1 INTRODUCTION

Nonlinear estimation has been investigated here based on ex-
tended Kalman, unscented, and particle filtering to gauge the
performance tradeoff among attitude and angular rate esti-
mation accuracy, robustness to uncertain initial conditions
and model mismatch, and computational workload. This in-
vestigation has been motivated by an experimental setup in
the LabSim at the Instituto Nacional de Pesquisas Espaciais
(INPE), where a 3-axis, air-suspended table has been instru-
mented as a testbed for designing and testing satellite atti-
tude estimation and control algorithms, and systems integra-
tion. The apparatus has been used as an educational tool in
demonstrations to undergraduate and graduate students from
ITA (Instituto Tecnológico de Aeronáutica), and stirred up
such an interest that inspired the present effort to simulate a
model of a similar testbed for the evaluation of nonlinear esti-
mation algorithms and their feasibility for actual space appli-
cations, specifically the attitude control system of a low-cost
university satellite.

Recent published work on applying particle filtering, ex-
tended and unscented Kalman filtering (Chagas and Wald-
mann, 2010; Chagas and Waldmann, 2010a) to the aforemen-
tioned simulated satellite testbed has shown that the sequen-
tial Monte Carlo method performs significantly better in case
an unexpected disturbance occurs and yields faster conver-
gence. The state vector spans a 7-dimension space, and thus
a high number of particles is needed to achieve a good ap-
proximation to the minimum mean square error (MMSE) es-
timate (Ristic et al., 2004). Hence, the heavy computational
burden of the particle filter prevents a real-time implementa-
tion even in desktop PCs (Chagas and Waldmann, 2010).

Crassidis and Markley (2003) have proposed an unscented
Kalman filter (UKF) with rate-gyros and magnetometer mea-
surements as an alternative to the use of the standard ex-
tended Kalman filtering (EKF) approach to a similar problem
of spacecraft attitude and angular rate estimation, and veri-
fied improved convergence with respect to the EKF. Cheng
and Crassidis (2009), using the same measurements, have
proposed a particle filter (PF) with a technique called pro-
gressive correction and verified that the initial convergence
rate was much better than EKF and UKF for large initial-
ization errors. Finally, Carmi and Oshman (2009) have pro-
posed a fast PF with a novel initialization and some addi-
tional steps that help to reduce drastically the number of par-
ticles needed with respect to the conventional, plain PF, also
called bootstrap filter.

The previous investigations mentioned above have analyzed
the respective algorithms from the point of view of initial
convergence rate, and the conclusions were that the particle
filter yields a faster convergence rate than EKF and UKF.
However, to the best knowledge of the authors, filter perfor-
mance under high disturbance torques has not been investi-
gated because its occurrence is very unlikely in actual space
applications. But the satellite testbed on the ground may need
to deal with this kind of disturbance, and it turned out that in
such a circumstance conventional PF algorithms with a low
number of particles can cause estimation divergence (Chagas
and Waldmann, 2010). One way to circumvent this problem
is to reinitialize the particles once the disturbance has been
detected. However, a much less computationally demand-
ing approach based on the Rao-Blackwellization technique
(Akashi and Kumamoto, 1977) with a fairly small number of
particles is proposed here that shows a disturbance rejection
comparable to that of the conventional, plain PF with a large
number of particles.

The present investigation extends previous work on PF
for the simulated satellite testbed (Chagas and Waldmann,
2010a; Chagas and Waldmann, 2010) but now with the main
focus on a Rao-Blackwellized PF. The procedure reduces the
variance of Monte Carlo estimates and is applicable when,
conditioned on a set of states, the remaining ones are lin-
ear and Gaussian (Doucet, 1998). Liu et al. (2007) have in-
vestigated a similar approach known as the marginalized PF
applied to attitude and rate-gyro bias estimation with vector
observations and also resorting to rate-gyro measurements.
Here, the state vector has been partitioned into two groups:
one with attitude-related components and the other with an-
gular rate components. Samples have been taken from the
second group with nonlinear dynamics, whereas the compo-
nents in the first group, which are also nonlinear, are esti-
mated using an Extended Kalman filter. Therefore, unlike
the model studied at Liu et al. (2007), the system model here
is not conditionally linear, but the Rao-Blackwellizationap-
proach becomes applicable by use of some mild approxima-
tions. Moreover, a significant reduction of the number of par-
ticles to attain an estimation accuracy much similar to thatof
the standard particle filter has been attained by concatenat-
ing pseudo-measurements of the angular rate to the measure-
ment vector. The pseudo-measurements have resulted from
low-pass filtering the numerical time-derivatives of the vec-
tor measurements. Though suboptimal, the present approach
becomes extremely attractive due to its reduced computa-
tional workload, which yields the Rao-Blackwellized PF a
potential algorithm for this space application.

In Brazil, most of the previous investigations on estimation
and control of satellite attitude were carried out at INPE, such
as Lopes et al. (1998), Walter and Pinto (1999), Silva et al.
(2004), Conti et al. (2007), Castro et al. (2008), Louro et al.
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(2007), and Duarte et al. (2009). Optimal nonlinear filter-
ing in GPS/INS integration was studied by Carvalho et al.
(1997). Regarding nonlinear estimation of satellite attitude,
Rios Neto et al. (1982) proposed an adaptive Kalman filter.
Santos and Waldmann (2009) compared an extended and an
unscented Kalman filter with vector observations from a Sun
sensor and magnetometer for a low-cost satellite (ITASAT)
attitude and angular velocity estimation. Garcia et al. (2011)
developed and compared two different unscented Kalman fil-
ters that were based on quaternion and Euler angles for atti-
tude parameterization.

The system model is presented in Section 2. The control
strategy is briefly described in Section 3. Section 4 contains
information about the filters that have been designed for this
investigation. Finally, simulation results and conclusions are
presented in Sections 5 and 6.

2 SYSTEM MODEL

The actual table mass unbalance and corresponding pendu-
lous effect due to gravity torque has been neglected in the
simulated testbed (Fig. 1). This inconvenience can be cir-
cumvented by careful balancing of the table mass prior to
application of the results presented here. Sun sensors on
board an orbiting satellite provide a reference direction for
attitude estimation and control. This reference directionhas
been simulated in the simulated testbed by use of accelerom-
eters measuring the local vertical given by the reaction to the
gravity vector, and assuming that the horizontal acceleration
was negligible. Hence, one requirement for the control sys-
tem was that it should align the table with the local horizontal
plane. Hence, the table has been instrumented with two ac-
celerometers with mutually orthogonal sensitive axes parallel
to the table surface. Additionally, one 3-axis magnetometer
on board the table has been used to provide a measurement of
the required additional reference direction, namely the local
geomagnetic field, which has also been measured by an ex-
ternal, horizontally aligned, ground-fixed 3-axis magnetome-
ter. The actuator suite is composed of a momentum wheel for
azimuth control (Carrara and Milani, 2007) within 1◦ relative
to a desired direction, and compressed air nozzles for on-off
torquing the table towards alignment within 0.5◦ relative to
the local horizontal plane. Notice that the focus is on nonlin-
ear attitude and angular rate estimation. Therefore a conven-
tional control strategy has been devised assuming linearized
dynamics and pole placement with feedback of the state esti-
mate. The system model has been already developed in Cha-
gas and Waldmann (2010a), and is again presented here for
the sake of completeness.
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Figure 1: Table reference (left), and desired frame (right).
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Figure 2: Horizontal frame.

2.1 Coordinate Frames

Three coordinate frames have been used to derive an ad-
equate model. The first one is the body-fixed coordinate
frame{Xb,Yb,Zb}, which is attached to the table with theZb

axis perpendicular to the table plane and pointing upward.
The second coordinate frame is the desired reference frame
{Xd,Yd,Zd}, which is aligned with the external magnetome-
ter sensitive axes. Non-orthogonality in the external magne-
tometer axes has been neglected. Bothb andd frames are
shown in Fig. 1. The rotation sequence has been parame-
terized by Euler anglesψ, θ, andφ, respectively about body
axesZb,Yb, andXb, thus rotating a vector representation from
the desired reference frame to the body frame. Note that
here the inertial coordinate frame neglects the Earth’s rota-
tion rate.

The desired reference frame has been useful for comparing
the on-board magnetometer measurements with respect to
the external magnetometer data. Additionally, a horizontal
coordinate frame{Xh,Yh,Zh} results from rotating the body-
fixed, table coordinate frame with the above−φ and−θ Eu-
ler angles aboutXb, andYb axes, respectively. The horizontal
frame when rotated by angleψ about the positive upward,
local vertical yields the alignment with the desired reference
frame. This is shown in Fig. 2.

2.2 Sensors

Attitude estimation relies on three sensors on board the air-
suspended table: two accelerometers and one magnetometer.
The accelerometers are used to estimate the local vertical and
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thus determine the misalignment between the table and the
horizontal coordinate frame. Data from the on-board magne-
tometer, called M1, should be compared with the output of
the external magnetometer, called M2, to determine the er-
ror with respect to the reference azimuth direction about the
local vertical.

The two accelerometers measure the components of spe-
cific force along theXb andYb axes, respectivelyAspb,1 and
Aspb,2, due to the reaction to gravity in the body-fixed, table
coordinate frame, as in Eq. 1:

Aspb =





Aspb,1
Aspb,2
Aspb,3



 = Dd
b ·





0
0

9.81



 =





−9.81·sin(θ)
9.81·cos(θ) ·sin(φ)
9.81·cos(θ) ·cos(φ)



 (1)

whereDd
b is the direction cosine matrix (DCM) that trans-

forms a vector representation from the desired reference
frame to the table coordinate frame. Accelerometer bias and
measurement noise have not been considered in Eq. 1, but
were taken into account when validating and comparing the
performance of the closed-loop control law with feedback of
state estimates computed by the distinct estimators.

Both magnetometers have been assumed to be located such
that the local magnetic field vector is practically the same at
both locations. Otherwise, comparing their respective mea-
surements would not be useful for estimating the desired ref-
erence azimuth, thus compromising accuracy when estimat-
ing Euler angleψ.

The magnetometer on board the air-suspended table outputs
a vector measurement,M1b, which calls for representation
in the horizontal coordinate frame. The representation has
been carried out with the estimated Euler anglesφ̂ and θ̂ to
approximate the DCMDb

h, as in Eq. 2.

M1h ≈ Db
h ·M1b (2)

One can compareM1h andM2b and use the cross product
operation to estimate sin(ψ), thus yielding Eq.3:

sin(ψ) = M2d,2 ·M1h,1−M2d,1 ·M1h,2 (3)

whereMxd,y is they-th component in thed coordinate frame
of the unit-norm geomagnetic field measurement vector pro-
duced by thex-th magnetometer. Therefore, the sensor suite
described here allows for the measurement of the three Euler
angles that rotate the desired reference coordinate frame into
alignment with the air-suspended table frame.

2.3 Actuators

A set of three actuators has been considered to control the
air-suspended table about its three axes: two pneumatic ac-
tuators for theXb andYb axes, and one reaction wheel for

Zb. The pneumatic actuators are assumed to be controlled
by a pulse width modulation (PWM) signal that determines
the duty cycle. Additive white noise has been included in
the actuator model to account for the small turbulence at the
nozzles when torquing the table. Three parameters are called
for in such a model: the torque magnitude that is applied
on the table by the nozzles when the actuator is on, the fre-
quency of the PWM carrier, and the actuator noise variance.
The reaction wheel has been modeled as in Sidi (1997) for
the purpose of validating estimation and control algorithms.
This ground-truth model has included wheel motor dynam-
ics, current and voltage limits, viscous friction, back-emf,
and the maximum angular rate limit. The usual dead-band
found in such wheels when crossing zero speed has not been
considered since it was assumed that the wheel is used for at-
titude control with a significant non-zero angular rate. Hence
the actuator actually behaves as a biased momentum wheel,
and such simplifying assumption does not affect the general-
ity of the results. The corresponding block diagram can be
seen in Fig. 3, whereIw is the wheel inertia,Im,3 is the ta-
ble inertia about theZb axis, Km,w, Kv,w , Rm,w andBw are
electromechanical wheel parameters,Tw is the commanded
torque, andu3 is the actual torque.

The wheel angular rate with respect to the air-suspended ta-
ble ωtac measured by an on-board tachometer is composed
of ωwb

b,3 and additive white Gaussian noise.

2.4 The Dynamics Model

The dynamics model has been adapted from Sidi (1997).
Both the table inertia matrix without consideration of the re-
action wheelIm,b, and the reaction wheel inertia matrixIw,b,
are shown in Eqs. 4 represented in the body-fixed table coor-
dinate frameb.

Im,b =





Im,b,1 Im,b,1,2 Im,b,1,3

Im,b,2,1 Im,b,2 Im,b,2,3

Im,b,3,1 Im,b,3,2 Im,b,3



 (4a)

Iw,b =





Iw,b,1 Iw,b,1,2 Iw,b,1,3

Iw,b,2,1 Iw,b,2 Iw,b,2,3

Iw,b,3,1 Iw,b,3,2 Iw,b,3



 (4b)

The table angular rate vector with respect to the inertial frame
ω

bi
b , and the reaction wheel angular rate vector with respect

to the tableω
wb
b are shown in Eqs. 5 represented in theb

coordinate frame:

ω
bi
b =

[

ωbi
b,1 ωbi

b,2 ωbi
b,3

]T
ω

wb
b =

[

0 0 ωwb
b,3

]T
(5)
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Figure 3: Reaction wheel block diagram.

Following the Newtonian formulation, the dynamics model
is represented in the table coordinate frameb as in Eqs. 6:








ω̇bi
b,1

ω̇bi
b,2

ω̇bi
b,3









=







Im,b,1 + Iw,b,1 Im,b,1,2 + Iw,b,1,2 Im,b,1,3

Im,b,2,1 + Iw,b,2,1 Im,b,2 + Iw,b,2 Im,b,2,3

Im,b,3,1 + Iw,b,3,1 Im,b,3,2 + Iw,b,3,2 Im,b,3







−1

·









−Iw,b ·









0

0
u3

Iw,b,3









−ω
bi
b ×Hb +Tc,b +Td,b









(6a)

ω̇wb
b,3 = −ω̇bi

b,3 +
u3

Iw,b,3
(6b)

with Td,b as the disturbance torque,Tc,b being the control
torque output by the pneumatic actuators and shown in Eq. 7,
Hb is the total angular momentum of both the table and the
reaction wheel as in Eq. 8, andu3 is the real torque acting
on the reaction wheel as shown in Fig. 3. Mass unbalance
torque due to gravity has been neglected because the testbed
is balanced to align its center of mass with the table air bear-
ing.

Tc,b =
[

Tc,b,1 Tc,b,2 0
]T

(7)

Hb = (Im,b + Iw,b) ·ωbi
b + Iw,b ·ωwb

b (8)

The table angular rate vectorω
bi
b relates to attitude Euler an-

glesψ, θ, andφ and respective time derivatives according to
the kinematics in Eqs. 9:

φ̇ = ωbi
b,1 +sin(φ) tan(θ)ωbi

b,2 +cos(φ) tan(θ)ωbi
b,3

θ̇ = cos(φ)ωbi
b,2−sin(φ)ωbi

b,3

ψ̇ =
sin(φ)

cos(θ)
ωbi

b,2 +
cos(φ)

cos(θ)
ωbi

b,3

(9)

Hence, the ground-truth model has been constructed using
Eqs. 6, Eq. 8, and Eqs. 9, and the reaction wheel dynamics
model seen in Fig. 3.

2.5 Model State and Measurement Vectors

Analyzing the model equations in the previous section, a
state vector inR7 has been defined: the three Euler angles
that rotate from the desired reference frame to the body-fixed
table frame, the three components of the angular rate vector
of the table with respect to the inertial frame represented in
the body-fixed coordinate frame attached to the table, and the
reaction wheel speed with respect to the table. Static friction
torque in the reaction wheel yields a steady state pointing er-
ror about theZb axis. Therefore, the integral of the pointing
error shown in Eq. 10 has augmented the state vector as seen
in Eq. 11:

ε =
Z t

0
(ψre f −ψ)dt → ε̇ = ψre f −ψ (10)

x =
[

φ θ ψ ωbi
b,1 ωbi

b,2 ωbi
b,3 ωwb

b,3 ε
]T

(11)

The reference state is given by Eq. 12. Thus, the con-
troller should align the table with the local horizontal plane,
and likewise the on-board magnetometer measurements with
those of the external magnetometer component-wise.

xre f =
[

0 0 0 0 0 0 0 0
]T

(12)

Recalling Eq. 1 and Eq. 3, the measurement vector concate-
nates accelerometers, magnetometers and tachometer data as
in Eq. 13.

y =









y1

y2

y3

y4









=















Aspb,2

9.81
−Aspb,1

9.81
M2d,2 ·M1h,1−M2d,1 ·M1h,2

ωtac















=

=









cos(θ)sin(φ)
sin(θ)
sin(ψ)

ωwb
b,3









(13)
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3 CONTROL STRATEGY

The main focus is to investigate and compare the perfor-
mance of nonlinear estimators. Consequently, a straight-
forward control technique based on state feedback has been
used. Firstly, the system has been linearized in the vicinity of
xre f . As a result, the horizontal plane dynamics given by the
state componentsφ, θ, ωbi

b,1 andωbi
b,2 has become decoupled

from the vertical dynamics embedded in the remaining state
components. Such decoupling allowed for the design of two
separate control laws for the horizontal and vertical dynam-
ics, respectively. Then, the closed-loop poles in Eqs. 14 have
been located to avoid actuator saturation while still yielding
an acceptable settling time.

phorizontal =
[

−1 −1 −1.5 −1.5
]

pvertical =
[

−0.2+ j0.2 −0.2− j0.2 −0.15
]

(14)

Additionally, control torque about each horizontal axis is
turned off when the corresponding Euler angle error norm
is less than 0.25◦. Control is switched back on when such
error norm is higher than 0.5◦. This avoids high-frequency
switching in actuators when the system is near the reference
state.

4 ESTIMATORS

This section describes the implementation of the estimators,
which assumed model simplifications. Disturbance torques
have been neglected, inertia matrices considered diagonal,
i.e., without inertia products, and the reaction wheel friction
and back-emf have been neglected, i.e.Tw = u3.

The continuous mathematical model, omitting model and
measurement noise, can be written as in Eqs. 15:

ẋ = f(x,u) y = h(x) (15)

whereu is a vector of control torques for both of the pneu-
matic actuators and the reaction wheel, andf(.) is a function
concatenating Eqs. 4 to Eq. 10 while considering the afore-
mentioned simplifications.

The PF algorithms call for a discrete-time system model. The
discretization is carried out, omitting model and measure-
ment noise, as in Eqs. 16:

xk = f∆(xk−1,uk−1)

yk = h(xk)
(16)

where∆ denotes the sample time. Functionf∆(xk−1,uk−1),
which transfers the system from instantk− 1 to instantk
using the sample time∆, can not be computed analytically
due to the nonlinear behavior of the continuous dynamics.
Therefore it has been approximated using the Runge-Kutta
4th-order algorithm with a fixed time step.

The ground-truth model has not considered any approxima-
tion; it has been built using Newton’s laws and as such does
not involve any modeling noise. However, implementation
artifacts contribute to a mismatch between the ground-truth
model and the one embedded in the estimators. These errors,
including those arising from numerical round-off, have been
merged into a virtual, additive, white noise sequence approx-
imated by a Gaussian probability density with zero mean and
a covariance that should be tuned in the estimator.

4.1 Extended Kalman Filter (EKF)

Regarding Eqs. 16 augmented with the corresponding addi-
tive noise, the EKF performs the linearization of the dynam-
ics about the updated state estimate, whereas the linearization
of the measurement equation is about the propagated state
estimate (Ristic et al., 2004). The continuous-discrete ap-
proach for the EKF has been used here (Gelb, 2001). Being
a slightly different algorithm with respect to the usual fully
discrete-time implementation, the approach offers more ade-
quate, improved performance in continuous systems than the
fully discrete approach because propagation is done by di-
rectly integrating the nonlinear continuous-time model equa-
tions as in the continuous Kalman-Bucy filter using, for ex-
ample, the 4th-order Runge-Kutta numerical integration al-
gorithm with a fixed time step, whereas the measurements
are discrete in time. Propagation is shown in Eqs. 17:

x̂k|k−1 = x̂k−1|k−1 +
Z tk

tk−1

f(x,u)dt

Pk|k−1 = Pk−1|k−1+

+
Z tk

tk−1

(

J f (x,u)P(t)+P(t)J f (x,u)T +Q
)

dt

(17)

whereJ f (x,u) is the Jacobian matrix of the functionf(.) at
the updated estimate and control pair(x,u), and Q is the
continuous-time model noise power spectrum density matrix.
The update step is performed as usual, and the above EKF
has been implemented previously in Chagas and Waldmann
(2010a).

4.2 Unscented Kalman Filter (UKF)

The UKF uses the unscented transform to achieve improved
estimation accuracy relative to the EKF when Eq. 15 aug-
mented with additive noise is a highly nonlinear model of
system dynamics and measurements. The unscented trans-
form calculates a set ofσ-points that are propagated using
the nonlinear model and measurement equations to yield es-
timates of the mean and covariance of the stochastic state
vector (Ristic et al., 2004). Such estimates better approxi-
mate the linear minimum mean square error estimate in com-
parison with the EKF estimation. Unlike the latter, it does
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not call for computation of Jacobians. Nevertheless, com-
putingσ-points requires a great amount of computational ef-
fort, which yields a heavier computational burden than the
EKF in almost every practical situation. The UKF has been
also implemented in Chagas and Waldmann (2010a) with the
continuous-discrete approach described in Särkkä (2007).

4.3 Rao-Blackwellized Particle Filter (RBPF)

Particle filters can be inefficient when dealing with high
dimensional systems because a large number of particles
is needed to represent the posterior probability density
(Murphy and Russell, 2001). Rao-Blackwellization is a tech-
nique to exploit the state-space structure and thus reduce the
number of particles. It is well-suited when the system dy-
namics is conditionally Gaussian. That is, when conditioned
on some of the state components, the remaining ones are lin-
ear and Gaussian so that the latter can be analytically esti-
mated by the Kalman filter (Doucet, 1998).

Chagas and Waldmann (2010) verified that standard PF al-
gorithms impose a huge computational burden because they
sample from the entire state space to solve this problem, thus
becoming unfeasible in actual space applications with the
presently available computational resources. Unfortunately,
the satellite simulation testbed model can be conditionally
Gaussian only when conditioned on a high-dimensional sub-
space, which does not decrease the computational burden
significantly. However, it turns out that the RBPF can be
successfully used with a significant improvement in perfor-
mance when some approximations are made.

Firstly, the integral of the azimuth pointing error has been
removed from the state vector, and the integration has been
performed for the purpose of control implementation with a
simple rectangle rule and the azimuth estimate. So the state-
space has been divided into two subspaces spanned, respec-
tively, by r andz as presented in Eqs. 18.

r =
[

φ θ ψ
]T

z =
[

ωbi
b,1 ωbi

b,2 ωbi
b,3 ωwb

b,3

]T (18)

Chagas and Waldmann (2010) verified that the standard PF
with a regularization step does not provide accurate estima-
tion of angular rate even when a large number of particles are
used. The measurement equation in Eq. 13 shows that the
subspace spanned by the body angular rates is not directly
measured and a large number of particles would be needed
to sample that subspace and achieve the required estimation
accuracy. The need for sampling the importance density with
many particles is caused by the angular rate being absent
from the measurement vector. Consequently, information is
not available in the measurements to guide the sampling to-
wards the subspace regions with high likelihood and obviate

the need for many particles. As a result, many particles are
called for, and sampling is performed based just on the prop-
agation of the dynamics model embedded in the filter. Poor
performance can occur in case disturbances occur though.
Thus, a pseudo-measurement of angular rate has been used
as a means of reducing the required number of sampling par-
ticles while maintaining estimation accuracy. This angular
rate pseudo-measurement has been produced by means of
differentiating and low-pass filtering the measurement equa-
tion, and then particle samples of the angular rate with a high
likelihood have been generated. A method to achieve this
goal has been inspired by previous work on angular rate es-
timation from vector observations (Bar-Itzhack, 2001) andis
used here with a slight modification as described next.

Taking the time derivative of the first, second and third com-
ponents of the measurement vector, recalling the attitude
kinematics in Eq. 9, and from Eq. 1, Eq. 3, and Eq. 13 one
obtains Eqs. 19 (see proof in Appendix A):













dy1

dt
dy2

dt
dy3

dt













= D(φ,θ,ψ) ·





ωbi
b,1

ωbi
b,2

ωbi
b,3





D(φ,θ,ψ) =

=









cos(φ)cos(θ) 0 sin(θ)
0 cos(φ)cos(θ) −sin(φ)cos(θ)

0
sin(φ)cos(ψ)

cos(θ)

cos(φ)cos(ψ)

cos(θ)









(19)

These derivatives can be approximated as in Eq. 20:

yp,k =













y1,k−y1,k−1

∆
y2,k−y2,k−1

∆
y3,k−y3,k−1

∆













≈













dy1

dt
dy2

dt
dy3

dt













(20)

whereyi,k is thei-th component of the original measurement
vector in Eq. 13 at instantk. Bar-Itzhack (2001) has proposed
the use of a pseudo-inverse function to estimate the angular
rate vector fromyp,k. Here, it is the inverse ofD(φ,θ,ψ),
which always exists when the Euler angles are subject to
−90◦ < φ,θ,ψ < 90◦. One should note that estimation of
the Euler angles is needed for pseudo-measurement compu-
tation, and hence the most recentr subspace estimates have
been employed for that purpose. Finally, the angular rate
vector estimation has been obtained as in Eq. 21:

ω̂k = D−1(r̂k−1|k−1) ·yp,k (21)

wherer̂k−1|k−1 is the updated estimate in ther subspace at in-
stantk−1. Finally, the pseudo-measurement vector in Eq. 20
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is low-pass filtered to attenuate noise arising from the numer-
ical time-derivatives (Franklin et al., 1997) as in Eq. 22:

ω̂ f ,k =

(

1− ∆
∆+ τ

)

ω̂ f ,k−1 +
∆

∆+ τ
ω̂k (22)

where∆ is again the sample time andτ is the filter time con-
stant. Finally, the augmented measurement vector has been
partitioned as in Eq. 23:

yr,k =
[

y1,k y2,k y3,k
]T

= hr(rk)

yz,k =
[

ω̂
T
f ,k y4,k

]T
= Hzzk

(23)

whereHz is the 4× 4 identity matrix and the measurement
function hr(rk) can be easily constructed from Eq. 1 and
Eq. 3. Notice that the measurement equation of thez sub-
space actually has a dependence on ther subspace because
of the coupling with attitude seen in Eq. 21. However, the
correct mathematical treatment for this dependence in the
PF algorithm would raise filter complexity to an undesirable
level. As a simplifying assumption, such coupling will be
neglected here.

With the past results, the discrete model and measurements
equations can be written as shown in Eqs. 24.

zk = fz(zk−1,uk−1)+wz,k

rk = fr(rk−1,zk−1)+wr,k

yz,k = Hzzk +vz,k

yr,k = hr(rk)+vr,k

yk =
[

yT
r,k yT

z,k

]T

(24)

where,wz,k ∼ N(0,Qz) , wr,k ∼ N(0,Qr), vz,k ∼ N(0,Rz),
vr,k ∼ N(0,Rr) and all these random vectors are considered
to be white and mutually independent. One can see that
fz(zk−1,uk−1) is obtained from discretization of Eqs. 6, and
fr(rk−1,zk−1) from discretization of Eqs. 9 with the Runge-
Kutta algorithm, as mentioned earlier in Eqs. 16.

Applying the PF algorithm with particle samples taken just
from zk , the minimum mean square error (MMSE) estimate
can be approximated as in Eqs. 25 (Doucet, 1998):

E{rk | y0:k} ≈
N

∑
j=1

w j
k ·E{rk | z( j)

0:k,y0:k}

E{zk | y0:k} ≈
N

∑
j=1

w j
k ·z

( j)
k

(25)

wherez( j)
k is the j-th particle in thez subspace,w j

k is the
associated weight, andN is the total number of particles.

Notice that the expectationE{rk | z( j)
0:k,y0:k} cannot be an-

alytically computed because of the nonlinear model of the

dynamics embedded in ther subspace, but has been ap-
proximated by an EKF. This approach is widely used and
corresponds to approximate the probability density function

(P.D.F.)p{rk | z( j)
0:k,y0:k} by a Gaussian distribution with pa-

rameters calculated by the EKF (Giremus and Tourneret,
2005). Hence, a set withN EKFs has been constructed, with
each EKF using functionfr(rk−1,z

( j)
k−1) as the model of ther

subspace dynamics.

Ther subspace has been selected for estimation with the sets
of EKFs due to the dynamics model in Eqs. 24. One can see
that thez subspace dynamics does not depend on ther sub-
space. Hence, sampling thez subspace depends on just the
particles set at the past instant and on the measurement at the
present instant. On the other hand, sampling ther subspace
would need the particles set at the past instant, the measure-
ment at the present instant,and thez subspace state compo-
nents at the past instant. The mathematical treatment in such
a case would increase the complexity of the estimation algo-
rithm. Hence, the estimation is carried out by a Monte Carlo-
based method in thez subspace, and by a Kalman filter-based
method for the remaining state components in ther subspace
(Doucet, 1998).

The importance density has been chosen as the optimal
one that minimizes the variance of the weights and is use-
ful to reduce the total number of particles (Doucet, 1998):

z( j)
k ∼ p(zk | z( j)

0:k−1,y0:k). Sampling from this P.D.F. can be
easily done using theorem 1.

Theorem 1 One can sample from the P.D.F.

p(zk | z( j)
0:k−1,y0:k) by sampling from the P.D.F.

p(zk | z( j)
k−1,yz,k).

Proof: See Appendix B. 2

One can see from Eq. 23 that the measurementyz,k on which

the importance densityp(zk | z( j)
k−1,yz,k) is conditioned lin-

early relates to the state partitionzk, and the measurement
noise is assumed additive and Gaussian. It can be proven
that this P.D.F is the one presented in Eq. 26 (Doucet, 1998):

p(zk | z( j)
k−1,yz,k) = N(zk;m

j
k,Σ)

Σ = (Q−1
z +HT

z R−1
z Hz)

−1

m j
k = Σ · (Q−1

z fz(z
( j)
k−1,uk−1)+HT

z R−1
z yz,k)

(26)

whereN(x;m,R) is the Gaussian probability density with
meanm and covarianceR evaluated atx.

The particle weights update is carried out as stated in theo-
rem 2.
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Theorem 2 The particle weights update step can be approx-
imated by Eq. 27:

w j
k ≈Ck−1 ·w j

k−1 ·N(yz,k;Hzfz(z
( j)
k−1,uk−1),HzQzHT

z +Rz)·
·N(ỹr,k;H

( j)
r,k r̂ ( j)

k|k−1,H
( j)
r,k P( j)

k|k−1H( j),T
r,k +Rr)

(27)

with Ck−1 being a normalization constant that does not de-

pend on wj
k−1, r̂ ( j)

k|k−1 the predicted estimate for the k-th in-
stant of the j-th EKF using all measurements up to the k−1

instant with covariance matrixP( j)
k|k−1, H( j)

r,k = ∂hr (r)
∂r

∣

∣

∣

r=r̂ ( j)
k|k−1

,

and ỹr,k = yr,k−hr(r̂
( j)
k|k−1)+H( j)

r,k r̂ ( j)
k|k−1.

Proof: See Appendix C. 2

The standard, plain PF (i.e. the bootstrap filter) algorithm
performance degrades when the dynamics model noise level
is low, because after a few time steps all particles tend to
concentrate in a very tight region in the state-space (Ristic
et al., 2004). Here, all modeling noise is caused mainly by
model mismatch and numerical errors. Such noise has a very
small covariance and the standard PF performance degrades
significantly. To avoid such a hurdle, a movement step has
been added after every resample stage using the Metropolis-
Hastings algorithm (Chilb and Greenbeg, 1995; Ristic et al.,
2004). Finally, the full algorithm can be described:

Initialization:

• FOR j = 1 : N DO

– z( j)
0 ∼ p0(z), wherep0(z) is the prior probability

of thez subspace at instant 0.

– r̂ ( j)
0|0 ∼ p0(r), P( j)

0|0 = P0, wherep0(r) is the prior
probability of ther subspace at instant 0 andP0

is the initial EKF filter covariance. Notice that the
prior probability does not need to be Gaussian. It
can be, for example, an uniform distribution that
covers the entirer subspace, butP0 must be set
accordingly to avoid divergence.

• END FOR

At every instantk:

• Construct the pseudo-measurement ˆω f ,k using Eq. 20,
Eq. 21, and Eq. 22, and assemble the measurement vec-
tor yz,k of thez subspace as in Eqs. 23.

• FOR j = 1 : N DO

– Draw z( j)
k ∼ p(zk | z( j)

k−1,yz,k) = N(zk;m
j
k,Σ),

where Σ = (Q−1
z +HT

z R−1
z Hz)

−1 and

m j
k = Σ · (Q−1

z fz(z
( j)
k−1,uk−1)+HT

z R−1
z yz,k).

– User̂ ( j)
k−1|k−1, P( j)

k−1|k−1 andz( j)
k−1 to execute the pre-

diction step of thej-th EKF to obtainr̂ ( j)
k|k−1 and

P( j)
k|k−1.

– Use r̂ ( j)
k|k−1, P( j)

k|k−1 andyr,k to execute the update

step of thej-th EKF to obtain̂r ( j)
k|k andP( j)

k|k.

– Update thej-th particle weight using:

ŵ j
k = w j

k−1 ·N(yz,k;Hzfz(z
( j)
k−1,uk−1),HzQzHT

z +Rz)·
·N(ỹr,k;H

( j)
r,k r̂ ( j)

k|k−1,H
( j)
r,k P( j)

k|k−1H( j),T
r,k +Rr)

H( j)
r,k =

∂hr(r)
∂r

∣

∣

∣

∣

r=r̂ ( j)
k|k−1

Hz = I4×4

ỹr,k = yr,k−hr(r̂
( j)
k|k−1)+H( j)

r,k r̂ ( j)
k|k−1

• END FOR

• {w j
k}N

k=1 = NORMALIZE({ŵ j
k}N

k=1)

• ComputeNe f f =
(

∑N
i=1(w

i
k)

2
)−1

• IF Ne f f < Nthres

– Execute the resample step with systematic re-
sample (Ristic et al., 2004) using the normalized

weights to achieve a new set of particlesz( j)
k−1:k and

respective EKFs (r̂ ( j)
k|k andP( j)

k|k).

– Execute the movement step using the Metropolis-
Hastings algorithm (Ristic et al., 2004) to achieve

a new set of particlesz( j)
k . Notice that the EKFs

remain untouched, because they only depend on

particlesz( j)
k−1, which remain the same in the move-

ment step.

• END IF

• r̂k|k = ∑N
j=1w j

k · r̂
( j)
k|k, which is the approximation of the

minimum mean square error estimate for ther subspace
as in Eqs. 25 (Murphy and Russell, 2001).

• ẑk|k = ∑N
j=1w j

k · z
( j)
k , which is the approximation of the

minimum mean square error estimate for thez subspace
as in Eqs. 25 (Murphy and Russell, 2001).
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4.4 Plain Particle Filter (PPF)

A standard, plain PF (PPF), which samples from the entire
state space, has also been designed just to gauge the per-
formance of the proposed RBPF. The standard PF has been
implemented using systematic resample (Ristic et al., 2004)
composed with a regularization step to increase the diversity
of the particles (Ristic et al., 2004). More details about this
particular implementation can be found in Chagas and Wald-
mann (2010).

5 SIMULATIONS AND RESULTS

5.1 Parameters

The simulations have been carried out using simulation table
parameters available from (Carrara and Milani, 2007), and
the XSens MTiG inertial measurement unit (IMU) specifica-
tion sheet as shown in Table 1. Both table and reaction wheel
ground-truth inertia matrices have included inertia products
to account for a residual mass unbalance in the table assem-
bly and uncertainty regarding the reaction wheel inertia pa-
rameters. Equation 28 shows the measurement noise covari-
ance matrix used in EKF, UKF and PPF:

R = diag

(

σ2
accel

9.812

σ2
accel

9.812

4·σ2
mag

5002 σ2
tac

)

(28)

wherediag(.) means a diagonal matrix. For the RBPF, the
measurement covariance matrix has been partitioned accord-
ing to Eqs. 24, and the used values are shown in Eqs. 29, with
the appropriate SI units.

Rr = diag

(

σ2
accel

9.812

σ2
accel

9.812

4·σ2
mag

5002

)

Rz = diag
(

0.01 0.01 0.07 σ2
tac

)

(29)

Each filter needed tuning of its model noise covariance as
shown in Eqs. 30, with the appropriate SI units:

QEKF = 0.5· I8×8

QUKF = 0.45· I8×8

QPPF = diag
(

5 5 5 100 100 100 1,000
)

·10−4

Qr,RBPF = 0.05· I3×3

Qz,RBPF = 0.01· I4×4

(30)

The number of particles in the PPF has been set to 500,000,
and the RBPF has been simulated in distinct instances with
15, 500, and 5,000 particles.

5.2 Filter Performance

Two metrics have been defined to gauge filter performance.
The first, the angle error, computes the rotation angle error

about the Euler axis that is related to the attitude estimation
error at each iteration as in Eq. 31. It has been used to as-
certain the attitude estimation accuracy of each filter. The
second, the angular rate error, computes the norm of the an-
gular rate vector estimation error at each iteration as in Eq.
32.

Θerror,k = acos

(

1
2
· trace(D̂b,T

d,k|k ·D
b
d)−

1
2

)

(31)

ωerror,k =
√

(ω̂k|k−ωk)T(ω̂k|k−ωk) (32)

where D̂b
d,k|k and Db

d are the estimated and ground-truth
DCM, respectively, at instantk that rotate from the body-
fixed coordinate frame attached to the simulation table to the
reference coordinate frame, and ˆωk|k andωk are the estimated
and ground-truth table angular rate vector, respectively,at in-
stantk. These two metrics have been computed at each itera-
tion over a large numberM of Monte Carlo simulations, and
finally were employed to obtain the mean and standard devi-
ation.

5.3 Results

All simulations have been carried out using Matlab in a
controlled Linux environment (ArchLinux distribution with
2.6.36 kernel) to ensure that the relative computational bur-
den of each algorithm can be properly estimated. For the
EKF, UKF and RBPF scenarios, 100 Monte Carlo simula-
tions have been carried out spanning a time interval from 0s
to 100s. For the PPF, only 15 Monte Carlo simulations have
been performed because of the heavy computational burden
and the available time. The ground-truth initial state vec-
tor has been kept fixed and is given in Eq. 33 with SI units.
For the Kalman filter-based simulations, the filter initial esti-
mate has been set equal to the initial state vector plus a ran-
dom vector in which each component was a random Gaussian
variable with zero mean and variance 0.1 (SI units). For the
PF-based simulations, the initial value for each particle has
been sampled from a uniform distribution, whose limits for
the angles have been set from−45◦ to +45◦ , and−10◦/s to
+10◦/s for the angular rates.

x0 =
[

25 −30 20 3 −3 −2 0 0
]T · π

180
(33)

An unexpected, deterministic pulse disturbance torque has
been applied at timet = 45s with a 0.3s duration to inves-
tigate filter robustness and convergence rate. The disturbing
torque vector is given in Eq. 34.

Td,b =
[

−0.7 0.7 0.3
]T

N.m (34)

The proposed RBPF has been simulated with 15, 500, and
5,000 particles, and the corresponding figures of merit in
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Table 1: Simulation parameters.

Symbol Description Value

General

∆ Sample time 0.01 s

τ Time constant of the low-pass filter in the RBPF pseudo-
measurement

0.2 s

Im,b
Table inertia matrix, disregarding the reaction wheel, rep-
resented in the table coordinate frame







0.4954/2 0.4954·0.1 −0.4954·0.1

0.4954·0.1 0.4954/2 0.4954·0.05

−0.4954·0.1 0.4954·0.05 0.4954






kg.m2

Iw,b
Reaction wheel inertia matrix represented in the table co-
ordinate frame







1.5·10−3/2 1.5·10−3 ·0.1 −1.5·10−3 ·0.1

1.5·10−3 ·0.1 1.5·10−3/2 1.5·10−3 ·0.05

−1.5·10−3 ·0.1 1.5·10−3 ·0.05 1.5·10−3






kg.m2

Bl
Local magnetic field represented in the reference coordi-
nate frame

[

0.8729 −0.4364 0.2182
]T

·500 mGauss

Sensors

εaccel Accelerometer bias 1 mg

σ2
accel Accelerometer measurement noise variance (0.002

√
30)2 (m/s2)2

σ2
tac Tachometer measurement noise variance 0.005 V2

σ2
mag Magnetometer measurement noise variance (0.5

√
10)2 (mGauss)2

Actuators

T pmax Pneumatic actuator maximum torque output 0.1 N ·m
σ2

p Pneumatic actuator torque noise variance 10−4 (N ·m)2

fp Pneumatic actuator PWM carrier frequency 2 Hz

ωwb
b,max Reaction wheel maximum angular rate 4,200 RPM

Twmax Reaction wheel maximum torque 0.05 N ·m
Km,w Reaction wheel motor constant 0.023 N ·m/A

ic,sat Reaction wheel current saturation Twmax/Km,w A

Rm,w Reaction wheel motor resistance 10 Ω

Vc,sat Reaction wheel voltage saturation Rm,w · ic,sat V

Kc,pi Proportional gain in reaction wheel PI controller 10 V/A

Ic,pi Integral gain in reaction wheel PI controller 2 V/(A·s)
Bw Reaction wheel viscous friction coefficient 4.9·10−6 N ·m·s/rad

Kv,w Reaction wheelKv back-emf coefficient 10−3 V ·s/rad
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Eqs. 31-32 for each scenario have been plotted in Fig. 4. To
improve the analysis, a zoom of the angular rate error norm
in steady state has also been plotted in Fig. 5. The com-
parison between EKF, UKF, PPF, and the proposed RBPF
can be found in Fig. 6 and Fig. 7. Due to lack of space,
additional results regarding the EKF, UKF and PPF can be
found in Chagas and Waldmann (2010a) and Chagas and
Waldmann (2010). Finally, Table 2 summarizes the com-
putational burden results for each scenario. Figure 4 and
Fig. 5 show that increasing the number of particles from
500 to 5,000 has not improved RBPF attitude estimation,
but provided a slightly improved angular rate estimation in
steady state. Figures 6 and 7 show that even with a very low
number of particles, the RBPF achieved an attitude determi-
nation accuracy that is comparable to the PPF with a huge
number of particles. Furthermore, the angular rate estima-
tion accuracy with just 15 particles is statistically the same
as the PPF, but Kalman-based methods perform angular rate
estimation better than the RBPF and PPF algorithms. The
convergence rates of the PF-based estimation methods PPF
and RBPF were better than that of the Kalman filter-based
algorithms, with PPF yielding a slightly faster convergence
than RBPF.

Table 2: Computational burden comparison.

Algorithm Comp. Burden (relative to EKF)

EKF 1.00

UKF 4.24

PPF (500,000 p.) 12,354

RBPF (15 p.) 3.03

RBPF (500 p.) 72.8

RBPF (5,000 p.) 722

6 CONCLUSIONS

A Rao-Blackwellized particle filter has been designed to es-
timate satellite attitude and angular rate composed with a
straightforward, linearized state feedback law for attitude
control in a simulated, air-suspended table. The table uses
two pneumatic actuators for alignment with the local hori-
zontal plane, and one reaction wheel for azimuth alignment.
The sensors consist of two accelerometers to estimate the lo-
cal gravity vector direction, and two magnetometers - one
on board the table, and the other fixed to the reference co-
ordinate frame to provide azimuth alignment about the lo-
cal vertical. The RBPF implementation proposed here for
the particular application partitions the state-space into two
groups: one formed by the attitude Euler angles and another
with the angular rates. Particle sampling has been carried out
just from the angular-rate subspace, whereas the Euler angles

were estimated by a set of Extended Kalman filters. For that
purpose, approximations have been employed to decrease the
computational burden and to render the problem analytically
tractable. In such a case achieving the minimum mean square
error estimate is not granted though when the number of par-
ticles tends to infinity. Additionally, a significant reduction in
the number of sampling particles has been accomplished by
augmenting the measurement vector with low-pass filtering
of the time-derivative of the vector observation. This aug-
mented pseudo-measurement has guided the sampling of the
angular-rate subspace, thus significantly decreasing the num-
ber of particles needed while simultaneously maintaining es-
timation accuracy.

The proposed RBPF yields a superior cost-benefit ratio than
the PPF, because the former provided an estimation accuracy
akin to the latter, and yet called for a much alleviated com-
putational workload. However, by keeping a low number of
particles the RBPF angular rate estimation accuracy has re-
sulted inferior to those of the EKF or UKF. Moreover, both
RBPF and PPF have produced attitude estimation far more
robust to a torque disturbance. Therefore, when dealing with
space applications that resort to sensors that measure vector
observations and demand accurate angular rate control com-
posed with the sound rejection of a disturbance torque - all
of that without incurring in a heavy computational burden -,
then the results reported here indeed encourage the use of
the EKF or UKF running in parallel with the proposed RBPF
with a small number of sampling particles.

Comparing with previous work on related applications, the
particle reduction using the RBPF proposed here for the in-
tended application is truly outstanding. Carmi and Oshman
(2009) studied the problem of spacecraft attitude and angu-
lar rate estimation using vector observations, which is very
similar to the problem presented here, and stated that the
plain particle filter would need at least 20,000 particles to
provide an acceptable estimation accuracy. Then, they de-
signed a different particle filter with modifications of the ini-
tial sampling and additional steps to decrease the number of
particles needed for attaining adequate estimation accuracy
to just 1,800. For the application investigated here, Chagas
and Waldmann (2010) verified that this number ought to be
much higher for the PPF to avoid divergence when a large
torque disturbance is applied - indeed, such is a benchmark
for gauging estimator performance that has not been consid-
ered so far in previous work to the best knowledge of the
authors. Since the proposed RBPF with just 15 particles has
achieved a comparable estimation accuracy with respect to
that of the PPF on Section 4.4 when subject to a torque distur-
bance and in steady state, it should be clear that the proposed
RBPF algorithm shows a superb gain in terms of alleviating
the computational workload.
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Figure 4: Figures of Merit for RBPF using 15, 500 and 5000 particles.

Figure 5: Zoom of steady state angular rate estimation error for
RBPF.

Since the computational load of the RBPF with 15 particles is
only about 3 times higher than that of the usual EKF, and has
a disturbance rejection very similar to the PPF, its implemen-
tation has been considered feasible for this space application
with adequate computational resources. Angular rate estima-
tion quality can be improved with an architecture in which
one EKF runs in parallel with the RBPF to accurately pro-
vide, respectively, angular rate and attitude estimates. Even

Figure 6: Comparison between the proposed scenarios - Attitude
determination.

in this scenario with both filters, the computational load will
still be lower than that of an UKF. Having the EKF and RBPF
running in parallel will demand the generation of a normally
distributed sequence though, a feature that is not requiredby
the UKF. Finally, an elaborate analysis of filter convergence
demands further investigation.
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Figure 7: Comparison between the proposed scenarios - Angular
rate determination.

APPENDICES

A PROOF OF EQUATION 19

Differentiating the first three measurement vector compo-
nents with respect to time one gets Eq. A.1:













dy1

dt
dy2

dt
dy3

dt













=





−sin(θ)cos(φ)θ̇+cos(θ)cos(φ)φ̇
cos(θ)θ̇
sin(ψ)ψ̇



 (A.1)

Equations 9 describe the kinematics relating the time deriva-
tive of the Euler angles and the table angular rate vector with
respect to the inertial frame. Equation 19 is proved by means
of substituting the kinematics in the Eq. A.1 and writing in a
compact matrix form.

B PROOF OF THEOREM 1

Firstly, using Bayes rule and process model present at
Eqs. 24, one can see that:

p(rk | z0:k,y0:k−1,yz,k) =

=
p(zk | z0:k−1,y0:k−1,yz,k, rk) · p(rk | z0:k−1,y0:k−1,yz,k)

p(zk | z0:k−1,y0:k−1,yz,k)
=

=
p(zk | zk−1,yz,k) · p(rk | z0:k−1,y0:k−1,yz,k)

p(zk | zk−1,yz,k)
=

= p(rk | z0:k−1,y0:k−1,yz,k)

(B.1)

Also:

p(yr,k | z0:k,y0:k−1,yz,k, rk) = p(yr,k | rk) =

= p(yr,k | z0:k−1,y0:k−1,yz,k, rk)
(B.2)

Applying the total probability theorem and using
Eqs. B.1 and B.2:

p(yr,k | z0:k,y0:k−1,yz,k) =

=
Z

R3
[p(yr,k | z0:k,y0:k−1,yz,k, rk)·

·p(rk | z0:k,y0:k−1,yz,k)]drk =

=
Z

R3
[p(yr,k | z0:k−1,y0:k−1,yz,k, rk)·

·p(rk | z0:k−1,y0:k−1,yz,k)]drk =

= p(yr,k | z0:k−1,y0:k−1,yz,k)

(B.3)

Finally the theorem can be proved by applying Bayes rule to
the importance density thus yielding:

p(zk | z0:k−1,y0:k) = p(zk | z0:k−1,yr,0:k,yz,0:k) =

=
p(yr,k | z0:k,y0:k−1,yz,k) · p(zk | z0:k−1,y0:k−1,yz,k)

p(yr,k | z0:k−1,y0:k−1,yz,k)
=

=
p(yr,k | z0:k−1,y0:k−1,yz,k) · p(zk | z0:k−1,y0:k−1,yz,k)

p(yr,k | z0:k−1,y0:k−1,yz,k)
=

= p(zk | z0:k−1,y0:k−1,yz,k) = p(zk | zk−1,yz,k)

(B.4)

C PROOF OF THEOREM 2

For the optimal importance density, the weights are updated
using (Doucet, 1998):

w j
k = Ck−1 ·w j

k−1 · p(yk | z( j)
0:k−1,y0:k−1) (C.1)

Firstly notice that, when conditioned onrk, yr,k is indepen-
dent ofyz,k. Hence:

p(yk | z( j)
0:k−1,y0:k−1, rk) = p(yr,k,yz,k | z( j)

0:k−1,y0:k−1, rk) =

= p(yz,k | z( j)
0:k−1,y0:k−1, rk) · p(yr,k | z( j)

0:k−1,y0:k−1, rk)

(C.2)

Also, using Bayes rule and process model present at Eqs. 24:

p(yz,k | z( j)
0:k−1,y0:k−1, rk) =

=
p(rk | z( j)

0:k−1,y0:k−1,yz,k) · p(yz,k | z( j)
0:k−1,y0:k−1)

p(rk | z( j)
0:k−1,y0:k−1)

=

=
p(rk | z( j)

0:k−1,y0:k−1) · p(yz,k | z( j)
0:k−1,y0:k−1)

p(rk | z( j)
0:k−1,y0:k−1)

=

= p(yz,k | z( j)
0:k−1,y0:k−1)
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(C.3)

Using the total probability theorem in Eq. C.1:

w j
k = Ck−1 ·w j

k−1

Z

R3

[

p(yk | z( j)
0:k−1,y0:k−1, rk)·

·p(rk | z( j)
0:k−1,y0:k−1)

]

drk

(C.4)

Applying Eq. C.2 in Eq. C.4, one gets:

w j
k = Ck−1 ·w j

k−1

Z

R3

[

p(yz,k | z( j)
0:k−1,y0:k−1, rk)·

·p(yr,k | z( j)
0:k−1,y0:k−1, rk) · p(rk | z( j)

0:k−1,y0:k−1)
]

drk

(C.5)

Finally, using Eq. C.3 in Eq. C.5:

w j
k = Ck−1 ·w j

k−1

Z

R3

[

p(yz,k | z( j)
0:k−1,y0:k−1)·

·p(yr,k | z( j)
0:k−1,y0:k−1, rk) · p(rk | z( j)

0:k−1,y0:k−1)
]

drk

= Ck−1 ·w j
k−1 · p(yz,k | z( j)

0:k−1,y0:k−1)·

·
Z

R3

[

p(yr,k | z( j)
0:k−1,y0:k−1, rk)·

·p(rk | z( j)
0:k−1,y0:k−1)

]

drk

= Ck−1 ·w j
k−1 · p(yz,k | z( j)

0:k−1,y0:k−1)·

·
Z

R3

[

p(yr,k | rk) · p(rk | z( j)
0:k−1,y0:k−1)

]

drk

(C.6)

Doucet (1998) showed that:

p(yz,k | z( j)
0:k−1,y0:k−1) = p(yz,k | z( j)

k−1) =

= N(yz,k;Hzfz(z
( j)
k−1,uk−1),HzQzHT

z +Rz)
(C.7)

Also, the P.D.Fp(rk | z( j)
0:k−1,y0:k−1) is approximated by a

Gaussian density with mean and covariance computed by the
set of extended Kalman filters:

p(rk | z( j)
0:k−1,y0:k−1) ≈ N(rk; r̂

( j)
k|k−1,P

( j)
k|k−1) (C.8)

It can be easily seen that:

p(yr,k | rk) = N(yr,k;hr(rk),Rr) (C.9)

Using this formulation, the integral in Eq. C.6 cannot be an-
alytically solved due to the nonlinear functionhr(rk). To cir-

cumvent this problem, this function is linearized aboutr̂ ( j)
k|k−1

as follows:

hr(rk) ≈ hr(r̂
( j)
k|k−1)+H( j)

r,k · (rk− r̂ ( j)
k|k−1) (C.10)

whereH( j)
r,k = ∂hr (r)

∂r

∣

∣

∣

r=r̂ ( j)
k|k−1

. Hence, the P.D.F. expressed in

Eq. C.9 can be approximated by:

p(yr,k | rk) = N(yr,k;hr(rk),Rr) =

= Ξ ·exp

(

−1
2

(yr,k−hr(rk))
T R−1

r (yr,k−hr(rk))

)

≈

≈ Ξ ·exp

(

−1
2

(

yr,k−hr(r̂
( j)
k|k−1)−H( j)

r,k · (rk− r̂ ( j)
k|k−1)

)T
·

·R−1
r

(

yr,k−hr(r̂
( j)
k|k−1)−H( j)

r,k · (rk− r̂ ( j)
k|k−1)

))

=

= Ξ ·exp

(

−1
2

(

ỹr,k−H( j)
r,k rk

)T
R−1

r

(

ỹr,k−H( j)
r,k rk

)

)

=

= N(ỹr,k;H
( j)
r,k rk,Rr)

(C.11)

where ỹr,k = yr,k−hr(r̂
( j)
k|k−1)+H( j)

r,k r̂ ( j)
k|k−1 and

Ξ =
(

(2π)3 ·det(Rr)
)− 1

2 .

Therefore, using Eq. C.7, Eq. C.8, Eq. C.9, and Eq. C.11, the
weights calculations in Eq. C.6 can be approximated by:

w j
k ≈Ck−1 ·w j

k−1·
·N(yz,k;Hzfz(z

( j)
k−1,uk−1),HzQzHT

z +Rz)·

·
Z

R3
N(ỹr,k;H

( j)
r,k rk,Rr) ·N(rk; r̂

( j)
k|k−1,P

( j)
k|k−1)drk

(C.12)

With this approximation, the aforementioned integral can
be evaluated. Firstly, one should consider the Chapman-
Kolmogorov equation applied to the prediction step of the
standard Kalman filter, shown in Eq. C.13 (Arulampalam
et al., 2002):

p(xk | y0:k−1) =

=
Z

Rn
p(xk | xk−1,y0:k−1) · p(xk−1 | y0:k−1)dxk−1

=

Z

Rn
p(xk | xk−1) · p(xk−1 | y0:k−1)dxk−1

(C.13)

Both P.D.F. in the above integral are rewritten in the standard
linear Kalman filter problem as follows (Ho and Lee, 1964;
Anderson and Moore, 1979):
Z

Rn
N(xk;Fkxk−1,Qk) ·N(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1 =

= N(xk;Fkx̂k−1|k−1,FkPk−1|k−1FT
k +Qk)

(C.14)

Performing the following variable substitution in Eq. C.14:

xk → ỹr,k, Fk → H( j)
r,k , xk−1 → rk, Qk → Rr ,

x̂k−1|k−1 → r̂ ( j)
k|k−1, Pk−1|k−1 → P( j)

k|k−1,

yr,k−hr(rk) → vr,k, n→ 3
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the vector dimensions remain consistent and the integral in
Eq. C.12 can be calculated:

Z

R3
N(ỹr,k;H

( j)
r,k rk,Rr) ·N(rk; r̂

( j)
k|k−1,P

( j)
k|k−1)drk =

= N(ỹr,k;H
( j)
r,k r̂ ( j)

k|k−1,H
( j)
r,k P( j)

k|k−1H( j),T
r,k +Rr)

(C.15)

Finally, applying the result expressed in Eq. C.15 in Eq. C.12,
one gets:

w j
k ≈Ck−1 ·w j

k−1·
·N(yz,k;Hzfz(z

( j)
k−1,uk−1),HzQzHT

z +Rz)·

·
Z

R3
N(ỹr,k;H

( j)
r,k rk,Rr) ·N(rk; r̂

( j)
k|k−1,P

( j)
k|k−1)drk =

= Ck−1 ·w j
k−1 ·N(yz,k;Hzfz(z

( j)
k−1,uk−1),HzQzHT

z +Rz)·
·N(ỹr,k;H

( j)
r,k r̂ ( j)

k|k−1,H
( j)
r,k P( j)

k|k−1H( j),T
r,k +Rr)

(C.16)
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