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Praça Mal. Eduardo Gomes, 50 - Vila das Acácias
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Abstract— This paper presents an alternative approach for improving the stationary fine self-alignment of
strapdown inertial navigation systems (SINS). This approach is based on an expansion on the measurement vector
of the linearised augmented state Kalman filter, which allows us to estimate the observable uncompensated inertial
sensor biases more quickly and more accurately, contributing, thus, to increase the system performance during
the navigation stage.

Keywords— Stationary fine self-alignment, Strapdown inertial navigation system, Measurement augmenta-
tion.

Resumo— Neste trabalho é apresentada uma abordagem alternativa para o auto-alinhamento fino estacionário
de sistemas de navegação inercial solidários. Tal abordagem baseia-se em uma expansão do vetor de medições
do Filtro de Kalman linearizado usualmente utilizado no problema do auto-alinhamento fino, o qual permite
que os bias observáveis não-compensados dos sensores inerciais sejam estimados com maior precisão e rapidez,
melhorando assim o desempenho global do sistema durante a fase de navegação.

Palavras-chave— Auto-alinhamento fino estacionário, Sistema de navegação inercial solidário, Expansão do
vetor de medições.

1 Introduction

In general, the self-alignment procedure of a strap-
down inertial navigation system consists of two
steps: the coarse self-alignment and the fine self-
alignment (Jekeli, 2000). The first is an ana-
lytical procedure that consists of measuring the
gravity and the Earth angular velocity vectors
using accelerometers and rate-gyros, respectively
(Britting, 1971). Such a procedure, however, does
not account for the uncompensated inertial sensor
errors, specially the uncompensated biases, result-
ing in approximate, but incorrect, values for the
estimated platform initial orientation.

The fine self-alignment, however, is a stochas-
tic filtering and optimal estimation based proce-
dure, implemented immediately after the coarse
self-alignment, which intends to improve the es-
timates of the platform initial orientation, by
also estimating the uncompensated sensor biases
(Rogers, 2007; Grewal et al., 2013).

Among various fine self-alignment methods
proposed in the literature, most of them are based
on the approach originally proposed by (Bar-
Itzhack and Berman, 1988). This method, sum-
marized in Section 2, uses the own inertial navi-

gation system (INS) and its corresponding prop-
agation error dynamic model, linearised around a
nominal operating condition, considered station-
ary for purposes of the self-alignment, to estimate
and compensate the initial platform misalignment
and the sensor biases. A linearised augmented
state Kalman filter is employed.

As measurement vector, this method uses the
Earth-referenced velocity error vector, which is de-
fined as the difference between the velocities calcu-
lated by the INS, and the true velocities, assumed
to be zero. As a result, one obtains a linear system
with degree of observability smaller than the order
of the system, reflecting the consequent inability
of the filter in properly estimating all states (Wu
et al., 2012).

In order to determine which are the unob-
servable states, different authors have studied this
stationary fine self-alignment approach from the
control theoretic point of view (Bar-Itzhack and
Berman, 1988; Jiang and Lin, 1992), and the con-
clusions are not in agreement. Here, as in (Fang
and Wang, 1996), it will be assumed that the un-
observable states are the uncompensated north
and east accelerometer biases and the east rate-
gyro bias.
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The objective of this paper is to propose an
alternative approach for the stationary fine self-
alignment of strapdown inertial navigation sys-
tems, through an expansion on the measurement
vector of the linearised augmented state Kalman
filter. This approach, introduced in Section 3, in-
cludes, in addition to the Earth-referenced veloc-
ity errors, the specific force and angular velocity
errors, measured directly by the inertial sensors,
which are directly coupled to the uncompensated
sensor biases.

In Section 4, some results are presented us-
ing the traditional and the proposed stationary
fine self-alignment approaches, for the simulated
case of inertial sensor readings only corrupted by
Gaussian white noise and uncompensated biases,
with inertial platform frame perfectly aligned to
the navigation frame. Finally, conclusions are pre-
sented in Section 5.

2 Traditional Fine Self-alignment

As mentioned in Section 1, one of the strategies
most widely used in stationary fine self-alignment
of strapdown inertial navigation systems is the one
originally proposed by (Bar-Itzhack and Berman,
1988). In order to better understand this strategy,
let us consider a generic INS. From (Savage, 2007),
it is known that the primary function of a ter-
restrial inertial navigator consists in integrating,
computationally, the following differential equa-
tions

Ċnb = Cnb (ωbib×) − (ωnin×)Cnb (1)

v̇n = fn − (ωnen + 2ωnie) × vn + gn (2)

Ċne = −(ωnen×)Cne (3)

where v is the Earth-related platform velocity vec-
tor; f is the specific force vector measured by the
accelerometers; g is the plumb-bob gravity vec-
tor; ωab is the angular velocity vector of frame
b relative to frame a, both generic frames; Cba
is the rotation matrix (or direction cosine ma-
trix) from frame a to frame b; the symbol × in-
dicates the skew symmetric form of a vector; and
the indexes i, e, n and b, represent the inertial
frame (ECI), geographic frame (ECEF), naviga-
tion frame (UEN) and platform frame, respec-
tively. In a more specific way, ωnen is called trans-
port rate vector, and ωbib is the angular velocity
vector measured by the rate-gyros.

By using the linear perturbation technique
(Rogers, 2007), one considers that, in practice, the
specific force vector and the angular velocity vec-
tor measured by inertial sensors (˜) are corrupted
by error vectors δf and δωib, respectively, that is

f̃ = f + δf (4)

ω̃ib = ωib + δωib (5)

Thus, the computed vales ( ¯ ) for the plat-
form position, velocity and attitude become, also,
equally corrupted by a term of error caused by
inertial sensor errors, namely

C̄nb = Cnb + δCnb (6)

v̄ = v + δv (7)

C̄ne = Cne + δCne (8)

Where, by using small-angle approximation
(Britting, 1971)

C̄nb = [I − (φ×)]Cnb (9)

C̄ne = [I − (θ×)]Cne (10)

where I is the identity matrix 3 × 3 and φ and
θ represent rotation vectors from computed plat-
form attitude and position to true platform atti-
tude and position, respectively.

Substituting (7), (9) and (10) in (1) to (3), the
following set of non-linear differential equations
related to the INS errors are obtained (Rogers,
2007),

φ̇ = δωnin − ωnin × φ− δωnib (11)

δv̇n = vn × (δωnen + 2δωnie) + fn × φ
− (ωnen + 2ωnie) × δvn + δfn + δgn (12)

θ̇ = δωnen − ωnen × θ (13)

By linearising the obtained equations around
the nominal operating condition (platform con-
sidered stationary during self-alignment), and ne-
glecting the gravity error vector δgn (Jekeli, 2000),
one has

φ̇ = δωnin − ωnin × φ− δωnib (14)

δv̇n = −2ωnie × δvn + fn × φ+ δfn (15)

θ̇ = δωnen (16)

In this paper, as in (Bar-Itzhack and Berman,
1988), the self-alignment is performed when the
INS is resting at a location whose geographic co-
ordinates (latitude L) are known almost perfectly.
For this reason, (16) can be eliminated from the
analysis.
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By representing (14) and (15) in state space
form,[

δv̇n

φ̇

]
=

[
Avv Avφ

Aφv Aφφ

][
δvn

φ

]
+

[
δfn

−δωnib

]
(17)

where

Avv =

 0 2Ω cosL 0

−2Ω cosL 0 2Ω sinL

0 −2Ω sinL 0

 (18)

Avφ =

0 0 0

0 0 −g
0 g 0

 (19)

Aφv =

0 tanL
R 0

0 0 − 1
R

0 1
R 0

 (20)

Aφφ =

 0 Ω cosL 0

−Ω cosL 0 Ω sinL

0 −Ω sinL 0

 (21)

with
R =

√
RLRλ (22)

where g and Ω represent the local gravity and
the Earth angular velocity, respectively, and RL
and Rλ are the meridian and transverse radii of
curvature at the platform position (Farrel and
Barth, 1999).

Once obtained the linearised INS error dy-
namic matrix, one expects to use a Kalman filter
in order to estimate such errors and to provide
corrections to the computed INS attitude.

As explained by (Bar-Itzhack and Berman,
1988) however, (17) is not suitable for use in
Kalman filter since the accelerometer and rate-
gyro errors are not white noise processes as re-
quired for proper use in a Kalman filter. Such
an obstacle, however, may be overcome since the
statistical characteristics of realistic accelerometer
and rate-gyro errors data can be represented quite
accurately by the outputs of linear models driven
by white noise process.

Thus, as suggested by (Jekeli, 2000), a suit-
able inertial sensor error model can be seen as the
sum of an uncompensated bias b, which, in this
paper was assumed to be a random constant, plus
a Gaussian white noise w, that is

δf = bf +wf (23)

δωib = bω +wω (24)

with
ḃf = 0 (25)

ḃw = 0 (26)

In this way, one can expand (17) in order to
create an augmented INS error model that does
not contain correlated noise and can be used in a
Kalman filter, namely
δv̇n

φ̇

ḃ
n

f

ḃ
n

ω

 =


AvvAvφ I O

AφvAφφ O −I
O O O O

O O O O



δvn

φ

bnf
bnw

+


wf

wω

O

O

 (27)

or compactly,

Ẋ = AX +W P (28)

where O is a zero matrix 3 × 3, A is the sys-
tem matrix, X is the augmented state vector and
W P ∼ N(0, Q) the process noise vector.

As measurement vector Y for the Kalman fil-
ter, one uses the velocity errors, assuming that the
platform is stationary (true Earth-related velocity
considered to be zero). Then,

Y =
[
v̄n − vn

]
(29)

Y =
[
I O O O

]
X +W Y (30)

or

Y = HYX +W Y (31)

where HY is the measurement matrix and W Y ∼
N(0, RY ) is the measurement noise vector which
represents the uncertainty in the velocities as-
sumed to be the true ones.

In order to implement the discrete Kalman fil-
ter (Brown and Hwang, 2012), the following equa-
tions are used,

X̂
−
k = AdX̂

+

k−1 (32)

P−k = AdP
+
k−1A

T
d +Qd (33)

Kk = P−k H
T
Y (HY P

−
k H

T
Y +RY )−1 (34)

X̂
+

k = X̂
−
k +Kk(Ỹ k −HY X̂

−
k ) (35)

P+
k = (I12 −KkHY )P−k (I12 −KkHY )T+

+KkRYK
T
k (36)

where the symbols ( ˆ ), ( )− and ( )+ indicate
estimated, predicted and corrected values, respec-
tively; k is the sampling time; Ad and Qd are,
respectively, the matrices A and Q discretized by
Van Loan method (Farrel and Barth, 1999); P is
the state covariance matrix; K is the Kalman op-
timal gain vector; and I12 is the identity matrix
12 × 12.
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Once the states are properly estimated, one
can obtain corrected estimates for the initial plat-
form orientation and for the uncompensated bi-
ases, which are the main objectives of this algo-
rithm, that is

Ĉnb = [I + (φ̂×)]C̄nb (37)

b̂
b

f = (Ĉnb )−1b̂
n

f (38)

b̂
b

ω = (Ĉnb )−1b̂
n

ω (39)

One of the majors performance restrictions of
this approach, however, lies in the system degree
of observability (Wu et al., 2012). Due to the state
space expansion implemented in (27), observabil-
ity matrix becomes deficient, that is

rank



HY

HYA
2

...

HYA
10

HYA
11

 = 9 < 12 (40)

As mentioned earlier in Section 1, different
authors have studied this stationary fine self-
alignment approach from the control theoretic
point of view (Bar-Itzhack and Berman, 1988;
Jiang and Lin, 1992), and the conclusions are not
in agreement. It can be shown, however, that for
this approach, the unobservable states are the un-
compensated north and east accelerometer biases
bfy and bfz, and the east rate-gyro bias bωy (Fang
and Wang, 1996).

3 Proposed Fine Self-alignment

The objective of this paper, as mentioned in Sec-
tion 1, is to propose an alternative approach for
the stationary fine self-alignment of strapdown
inertial navigation systems. Such an approach,
adapted from (Farrel and Barth, 1999), is based
on an expansion on the measurement vector of the
linearised augmented state Kalman filter.

In order to analyse the proposed approach, let
us to consider (4), which represents the raw ac-
celerometer readings, resolved in platform frame,

f̃
b

= f b + δf b (41)

Naturally, in navigation frame, one has

f̃
n

= fn + δfn (42)

where
f̃
n

= Cnb f̃
b

(43)

Analysing (43), one can conclude that the vec-

tor f̃
n

can not be founded in practice, since it de-
pends on Cnb , whose true value is exactly what one

seeks to determine. Let us to introduce a new vec-
tor f̄

n
, which should be understood as the clos-

est vector from f̃
n

one can compute before the
Kalman filtering, that is

f̄
n

= C̄nb f̃
b

(44)

On the other hand, from the formal definition
of the navigation frame, one can assume (as it
was done to platform position and velocity) that
the true value of fn is known, and is given by
(Britting, 1971)

fn =

g0
0

 (45)

Hence, the following difference can be com-
puted,

f̄
n − fn = C̄nb f̃

b
− fn

= [I − (φ×)]Cnb (f b + δf b) − fn

= fn − φ× fn + δfn − φ× δfn − fn (46)

Neglecting error products,

f̄
n − fn = fn × φ+ δfn

= fn × φ+ bnf +wn
f (47)

Proceeding similarly with (5), and assuming
that (Britting, 1971)

ω̄nib = C̄nb ω̃
b
ib (48)

ωnib =

Ω sinL

0

Ω cosL

 (49)

One obtains

ω̄nib − ωnib = ωnib × φ+ bnω +wn
ω (50)

In this way, an augmented measurement vec-
tor Z to the Kalman filter applied to stationary
fine self-alignment problem is proposed, that is

Z =

 v̄n − vn

f̄
n − fn

ω̄nib − ωnib

 (51)

Z =

 I O O O

O Avφ I O

O −Aφφ O I

X +WZ (52)

or
Z = HZX +WZ (53)

where Avφ and Aφφ are the matrices already de-
fined in (19) and (21); and HZ and WZ ∼
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N(0, Rz) are the new measurement matrix and
new measurement noise vector, respectively.

Analysing the system degree of observability
with the augmented measurement vector, one has

rank



HZ

HZA
2

...

HZA
10

HZA
11

 = 9 < 12 (54)

As can be seen, the expansion of the Kalman
filter measurement vector did not improve the sys-
tem degree of observability. However, as will be
shown in Section 4, the proposed measurement
vector allows the observable states bfx, bωx and
bωz (up accelerometer bias, and up and north
rate-gyro biases) to be more quickly and more ac-
curately estimated than by using the traditional
measurement vector.

4 Simulation Results

In order to demonstrate the superiority of the
proposed stationary fine self-alignment approach
upon the traditional one, some results are pre-
sented for the simulated case of inertial sensor
readings only corrupted by Gaussian white noise
and uncompensated biases, with inertial platform
frame perfectly aligned to the navigation frame.

In the computer simulation one assumed L =
−23◦12′46′′; sampling rate of 100Hz, accelerome-
ter readings corrupted by 0.001g biases and rate-
gyro readings corrupted by 0.3◦/h biases. Figures
1 to 3 illustrate the observable bias bfx, bωx and
bωz estimated by using each approach. As can
be seen, although the proposed approach did not
increase the system degree of observability, it im-
proves the estimation convergence rate of the ob-
servable biases, which are estimated in few min-
utes, in contrast to few hours required by the tra-
ditional approach.

Despite the effectiveness of the proposed ap-
proach, it could not improve the convergence rate
of platform misalignment vector φ, since this de-
pends directly on the unobservable uncompen-
sated biases bfy, bfz and bωy, which the Kalman
filter is unable to estimate. Recent works, how-
ever, have overcame this deficiency by propos-
ing alternative procedures (Shuanbin et al., 2004),
which may be combined to the approach proposed
in this paper, in order to form a more robust and
accurate stationary fine self-alignment algorithm
for inertial navigation systems.

5 Conclusion

This paper has presented an alternative approach
for improving the stationary fine self-alignment
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Figure 1: Estimated up accelerometer bias.
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Figure 2: Estimated up rate-gyro bias.
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Figure 3: Estimated north rate-gyro bias.

of strapdown inertial navigation systems. This
approach is based on an expansion on the mea-
surement vector of the linearised augmented state
Kalman filter, which allows us to estimate the
observable uncompensated inertial sensor biases
more quickly and more accurately, contributing,
thus, to increase INS performance during the nav-
igation stage.
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