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Abstract: The satellite Amazonia-1, which uses the Brazilian Multi-Mission Platform, has two
star trackers and a four-axis fiber optic gyro to estimate the attitude at the routine operation mode.
The gyro measurements are used to build the attitude estimation error model in which the state are
estimated by means of a recursive filter. In a previous study, the attitude estimation error covariance
was analyzed considering that both star trackers have constant accuracy. However, since the
satellite will be placed on a sun-synchronous orbit pointing towards Earth, then each star tracker
will have different set of stars in their field of view throughout the orbit. Thus, the measurement
accuracy of these sensors will vary over the year. The star tracker manufacturer supplied a map that
provides the sensor accuracy given the ascension and declination of its boresight axis represented
in the J2000 reference frame. This new information is used to extend the aforementioned previous
study to compute more realistically the statistics of the satellite attitude estimation errors. Moreover,
this study analyzes the estimation accuracy under different scenarios of sensor failures.
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1. Introduction

The Brazilian mission Amaziona-1 has as its primary objective the monitoring of the Amazonia
rainforest. The satellite uses the Brazilian Multi-Mission Platform (MMP) and will be launch
on a sun-synchronous, frozen orbit with semi-major axis of 7131.00 km, inclination of 98.405,
eccentricity of 0.001111, and a RAAN such that the apparent local time at the illuminated part of
the orbit is 10:30 AM [1].

The MMP uses two SED-26 star trackers and a four-axis fiber optic gyro Astrix-120 to estimate
the attitude at the routine satellite operation mode (ROU). In this mode, the attitude determination
process first evaluate a static estimate by combining the output quaternion from both star trackers
and then the static estimate is filtered with the aid of the gyro measurements. The star trackers
were positioned with their field of view orthogonal to each other in order to minimize the total error
under the constraint that neither of them can point closer than a given excluding angle to the Sun
nor to the Earth. In a previous study [2], the satellite attitude estimation accuracy was evaluated
considering the star trackers with constant accuracy equivalent to their 3σ level over the whole
celestial vault. However, the satellite will be Earth oriented on a sun-synchronous orbit and the star
trackers will see different sets of stars throughout the orbit. In this scenario the measurement error
statistics will vary, since the star trackers accuracy depends on the stars in their field of view [3].

The star tracker manufacturer, as can be seen in Fig. 1, provided data to obtain the low frequency
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error (LFE) and 3σ noise equivalent error (NEA) as a function of the ascension and declination of
the star tracker optical axis related to the J2000 coordinate frame. In this paper the aforementioned
previous study is extended by using this novel information to compute more realistically the seasonal
variation of the Amazonia-1 attitude estimation accuracy throughout the year. Moreover, this study
provides additional information about the estimation accuracy under a set of possible failures.

The gyro measurements are used to build the attitude estimation error model in which the state
can be estimated by means of a recursive filter. On the other hand, when the gyro measurements
are not available, the attitude estimation is obtained by the static fusion of the both star trackers
measurements. In this study, two filters were considered to fuse the gyro measurements. The
first is the optimal Kalman filter that uses the true measurement covariance as provided by the
manufacturer. The second is the constant gain filter that is the steady-state solution of the former
based on a constant model of the star trackers accuracy. Notice that the latter is the algorithm
embedded in the AOCS on-board computer.

In section 2, the coordinate frames used in this analysis are introduced. The mathematical modeling
of the estimation and sensor errors can be seen in section 3. The results and analysis are presented
in section 4 and, finally, the conclusions are in section 5.

Figure 1. Low frequency error (LFE) and 3σ noise equivalent error (NEA) as a function of the
ascension and declination of the star tracker optical axis in the J2000 coordinate frame. The left
column contains the errors in the star tracker optical plane and the right column contains the errors
in the star tracker optical axis.
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2. Coordinate Frames

The coordinate frames used in this paper can be seen on Fig. 2. They are defined as follows:

• The inertial coordinate frame Si is composed of the axes {xi, yi, zi}. Here it is defined as the
J2000 coordinate system.

• The AOCS body coordinate frame Sb is composed of the axes {xb, yb, zb} that are aligned
with the satellite body as shown in Fig. 3. The estimation algorithm pursues to find the
direction cosine matrix that rotates the inertial coordinate frame into alignment with the body
coordinate frame.

• The computed coordinate frame Sc is composed of the axes {xc, yc, zc} and is defined as the
coordinate frame obtained by the on-board computer after fusing the available measurements
from the FOG and the star trackers. Notice that if the measurements are ideal, then the body
coordinate frame is equal to the computed coordinate frame.

• Each star tracker has its own coordinate frame in which its measurements are represented. It
will be called Sstra for the star tracker A and Sstrb for the star tracker B.

xi

yi

zi

zc

yc

xc

zb
yb

xb

Figure 2. Coordinate frames.
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Figure 3. Body coordinate frame.

3. Mathematical Modeling

This section contains the mathematical modeling of the system. Since this paper pursues to quantify
only the estimation errors, it is assumed that the control algorithm is ideal. Thus, the satellite angular
velocity represented in the body coordinate frame is

ωωωb =
[

0 Ω 0
]T rad/s, (1)

where Ω is the orbital angular velocity.

3.1. Fiber Optic Gyro Error Model

The FOG Astrix-120 has four channels arranged on a tetrahedron. Let g denote the FOG coordinate
frame, then the error vector can be written as

eg = bg(t)+warw,g(t) =


b1(t)
b2(t)
b3(t)
b4(t)

+


warw,1(t)
warw,2(t)
warw,3(t)
warw,4(t)

 , (2)

where b j(t) is the bias of j-th channel and warw, j(t) is a white, Gaussian random process with power
spectral density Narw that is the source of the angular random walk about j-th axis, j ∈ [1,2,3,4].
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The direction cosines of FOG axes in the AOCS coordinate frame are

Tb
g =




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Thus,
ωωωg = Tb

gωωωb

Tb,T
g ωωωg = Tb,T

g Tb
gωωωb(

Tb,T
g Tb

g

)−1
Tb,T

g︸ ︷︷ ︸
Dg

b

ωωωg = ωωωb

Dg
bωωωg = ωωωb ,

(4)

where

Dg
b =
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 (5)

is the matrix that represents the FOG measurements in the body coordinate frame. Notice that Dg
b

is not a direction cosine matrix. Finally, the FOG error vector represented in the body coordinate
frame can be written as

eb(t) = Dg
beg(t) = Dg

bbg(t)+Dg
bwarw,g(t)

eb(t) = bb(t)+Dg
bwarw,g(t) .

(6)

The bias continuous dynamic model about j-th FOG axis can be written as

ḃ j(t) =−λb j(t)+ v j(t) , (7)

where λ ∈ R and v j(t) is a white, Gaussian random process with power spectral density Nb. The
solution of differential equation 7 is [4, 5]

b j(t) = e−λ tb j(0)+
∫ t

0
e−λ (t−τ)v j(τ)dτ . (8)

Thus, the discrete solution can be written as

b j,k = e−λ∆tb j,k−1 + v j,k−1 , (9)
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where b j,k = b j(tk), ∆ = tk− tk−1, and v j,k−1 =
∫

∆t
0 e−λ (∆t−τ)v j(τ + tk−1)dτ .

It can be proved that v j,k−1 is a Gaussian random variable [5]. Thus, it is only necessary to compute
its mean and covariance [6]. Using the properties of expectation operator and that v j is a white
random process, one can see that [6]

E{v j,k−1}=
∫

∆t

0
e−λ (∆t−τ)E{v j(τ + tk−1)}dτ = 0 . (10)

In the sequence, the covariance can be computed using

E{v2
j,k−1}= E

{(∫
∆t

0
e−λ (∆t−τ1)v j(τ1 + tk−1)dτ1

)
.

(∫
∆t

0
e−λ (∆t−τ2)v j(τ2 + tk−1)dτ2

)}
(11)

that leads to

E{v2
j,k−1}=

∫
∆t

0

∫
∆t

0
e−λ (t−τ1)e−λ (t−τ2)E{v j(τ1 + tk−1)v j(τ2 + tk−1)}dτ1dτ2

E{v2
j,k−1}=

∫
∆t

0

∫
∆t

0
e−λ (t−τ1)e−λ (t−τ2)Nbδ (τ1− τ2)dτ1dτ2

E{v2
j,k−1}=

Nb

2λ

(
1− e−2λ∆t

)
= Qb

(
1− e−2λ∆t

)
,

(12)

where δ (t) is the Dirac delta and Qb = Nb/2λ is the gyro bias stability. The latter describes how
the bias may change over a specified period of time τ = 1/λ , typically around 100s, in fixed
conditions [7]. Usually it is specified as a 1σ value with units ◦/h or ◦/s.

The bias continuous model represented in the body coordinate frame can be written as

ḃb(t) =
d
dt

(
Dg

bbg(t)
)
= Dg

bḃg(t) =−λDg
bbg(t)+Dg

bvg(t) =−λbb(t)+Dg
bvg(t) , (13)

where vg(t) =
[

v1(t) v2(t) v3(t) v4(t)
]T .

Finally, the FOG measurement represented in the body coordinate frame can be written as

ωωω
m
b = ωωωb + eb , (14)

where ωωωb is the true satellite body angular rate and eb is the measurement error as in 6, both
represented in the AOCS coordinate frame.

3.2. Dynamic Model of Attitude Determination Errors

Ideally, the on-board computer would compute the DCM Db
i that rotates the body coordinate frame

onto the inertial coordinate frame. This matrix can be computed by integrating the differential
equation [8]

Ḋb
i = Db

i [ωωωb]× , (15)
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where [v]× is the skew-symmetric matrix that represents the cross product. However, since the true
angular velocity ωωωb is not available, the on-board computer will use the FOG measurement in 14 to
compute to following DCM:

Ḋc
i = Dc

i [ωωω
m
b ]× . (16)

Notice that the computed coordinate frame and the body coordinate frame are misaligned due to
the FOG measurement errors only. It is assumed that such errors are small enough to yield small
misalignment angles between these two coordinate frames. Thus, it can be written that [8]

Dc
b ≈ I3 +[∆θθθ ]× , (17)

where ∆θθθ =
[
θa,x θa,y θa,z

]
is a vector composed of the misalignment angles about the body

axes.

Using 14 in 16 and neglecting second order terms, it can be proved that[
∆̇∆∆θθθ
]
× = [∆∆∆θθθ ]× [ωωωb]×− [ωωωb]× [∆∆∆θθθ ]×+[eb]× . (18)

Additionally, one can see that

[∆∆∆θθθ ]× [ωωωb]×− [ωωωb]× [∆∆∆θθθ ]× = [ωωωb×∆∆∆θθθ ]× =
[
[ωωωb]×∆∆∆θθθ

]
× . (19)

Finally the continuous dynamic model of the misalignment angles can be written as

∆̇∆∆θθθ = [ωωωb]×∆∆∆θθθ + eb , (20)

where ωωωb is given by 1.

The state-vector used in this analysis is composed of the misalignment angles and the FOG bias.
Thus, using 6, 13, and 20, the continuous dynamic model can be written as

˙[
∆θθθ

bb

]
=

[
[ωωωb]× I3
03×3 −λ I3

][
∆θθθ

bb

]
+

[
Dg

bwarw,g
Dg

bvg

]
. (21)

Let ∆t be the gyro sampling interval, then, using the linear system theory and the result in 12, it can
be proved that discretization of the continuous linear system in 21 leads to

xk = Fxk−1 +wk−1 , (22)

where

F =



cos(Ω∆t) 0 −sin(Ω∆t) β1(∆t) 0 −β2(∆t)
0 1 0 0 β3(∆t) 0

sin(Ω∆t) 0 cos(Ω∆t) β2(∆t) 0 β1(∆t)
0 0 0 e−λ∆t 0 0
0 0 0 0 e−λ∆t 0
0 0 0 0 0 e−λ∆t

 , (23)

7



β1(∆t) =
λ

λ 2 +Ω2 cos(Ω∆t)+
Ω

λ 2 +Ω2 sin(Ω∆t)− λ

λ 2 +Ω2 e−λ∆t ,

β2(∆t) =
λ

λ 2 +Ω2 sin(Ω∆t)− Ω

λ 2 +Ω2 cos(Ω∆t)+
Ω

λ 2 +Ω2 e−λ∆t ,

β3(∆t) =
1
λ

(
1− e−λ∆t

)
,

and wk−1 is a Gaussian random variable with zero mean and covariance matrix

Q =
3
4
·



q1(∆t) 0 0 q3(∆t) 0 −q4(∆t)
0 q2(∆t) 0 0 q5(∆t) 0
0 0 q1(∆t) q4(∆t) 0 q3(∆t)

q3(∆t) 0 q4(∆t) Qb(1− e−2λ∆t) 0 0
0 q5(∆t) 0 0 Qb(1− e−2λ∆t) 0

−q4(∆t) 0 q3(∆t) 0 0 Qb(1− e−2λ∆t)

 ,

(24)

q1(∆t) = Narw∆t +
2Qbλ

λ 2 +Ω2 ·
[

∆t− 2λ

λ 2 +Ω2

(
1− e−λ∆t cos(Ω∆t)

)
+

2Ω

λ 2 +Ω2 e−λ∆t sin(Ω∆t)

+
1

2λ

(
1− e−2λ∆t

)]
,

q2(∆t) = Narw∆t +
2Qb

λ

[
∆t− 2

λ

(
1− e−λ∆t

)
+

1
2λ

(
1− e−2λ∆t

)]
,

q3(∆t) =
Qbλ

λ 2 +Ω2

[
1+ e−2λ∆t−2e−λ∆t cos(Ω∆t)

]
,

q4(∆t) =
Qb

λ 2 +Ω2

[
Ω(1− e−2λ∆t)−2λe−λ∆t sin(Ω∆t)

]
,

q5(∆t) =
Qb

λ

[
1−2e−λ∆t + e−2λ∆t

]
.

Notice that the gain 3/4 in the covariance matrix is the result of using the 4-channels of the gyro to
estimate the angular velocity about the three body axes.

3.3. Star Tracker Error Model

The attitude determination by a star tracker is based on the image centroid of several stars in
the sensor field of view. The resulting accuracy is a function of accuracy of each star position
measurement and the geometric pattern of the observed stars, which are dependent of the sky region
observed by the sensor. Additionally, due to the sensor limited field of view, accuracy is several
times better about the focal plane axes than about the sensor boresight axis [3]. Furthermore, the
accuracy is usually limited by three different types of errors: Noise Equivalent Angle (NEA); Low
Frequency Error (LFE); and Bias, as described in the sequence [3].

NEA is mainly due to optic and electronic noises, the first one caused by incident radiation from
sky darkness background and the second is intrinsic from electronic components [3]. The standard
variation of the NEA about each sensor axis is given by the sensor manufacturer as a function of
sensor boresight direction over the celestial vault, as can be seen in Fig. 1.
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LFE is mainly due to several aberration effects on non-ideal sensor optics and thermo elastic effects.
For a given sensor attitude with respect to the stars and a given sensor temperature such error
remains basically the same. Nevertheless, as the scenario changes with time due to spacecraft orbital
motion, LFE experiments slow variations. Such effects can be mitigated by factory calibration.
However, since optic distortions are a function of light spectrum and position of each star in the
sensor field of view, and this function changes with sensor temperature, residual calibration errors
are practically unavoidable as they experiment a too large number of degrees of freedom to be fully
reproduced in laboratory [9]. An upper limit to the LFE after calibration is evaluated by the sensor
manufacturer as a function of the sensor boresight direction on the celestial vault, as can be seen in
Fig. 1.

Finally, bias is a constant but unknown error due to both internal and external misalignments after
launch mainly caused by launching vibrations as well as to zero-g effects [9].

Boresight accuracy deficiency can be mitigated by data fusion of two star trackers placed one
orthogonal to each other [2]. This has also a benefic effect on NEA about any axis. As for the
accuracy level variations over the celestial vault, it is usually better than average when bright stars
are observed, while sky regions with low star density are likely to present a poor accuracy [3]. Such
accuracy irregular pattern can be smoothed by data filtering feed by gyro measurements. Finally,
for remote sensing missions, bias can be mitigated by after launch ground calibration aided by
landmarks, hence this component of the star tracker measurement error has been neglected in this
analysis.

For simulation purposes, NEA is modeled as a random Gaussian white sequence with given
covariance matrix for each direction of the sensor boresight. Due to the random nature of NEA
sources, it is considered a spatially uncorrelated error, therefore with diagonal covariance matrix
when represented in the i-th star tracker coordinate frame:

Rstri
stri,k =

σ2
xy(ustri,k) 0 0

0 σ2
xy(ustri,k) 0

0 0 σ2
z (ustri,k)

 , (25)

where σxy and σz are the NEA standard deviation about the focal plane axes and the boresight axis
respectively, and ustri,k is the unit vector in the sensor boresight direction of the i-th star tracker at
instant k.

In this work, LFE was simulated as the worst case among the eight possibilities with maximum
absolute value in each axis:

εεεstri,k =

∆xy(ustri,k)
∆xy(ustri,k)
∆z(ustri,k)

 , (26)

where ∆xy and ∆z are the LFE upper limit about the focal plane axes and the boresight axis
respectively. Worst case among the eight possible signal combinations means the one with worst
effect after data fusion of both star trackers. However this approach, besides requiring checking
64 signal combinations, is too conservative since it would require worst conditions on sensor
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temperature and position of each star in the field of view of both sensors in every sensor axis
simultaneously. Future work will focus on a more realistic LFE representation.

Finally, considering the dynamic model in 22, the i-th star tracker measurement at instant k
represented in the body coordinate frame can be written as

ystri
b,k =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

xk +Dstri
b εεεstri,k +Dstri

b vstri,k , (27)

where vstri,k is a Gaussian random variable with zero mean and Rstri
stri,k covariance. If the measure-

ments of both star trackers are available, they can be fused using [6]

y f
b,k =

(
Rstra,−1

b,k +Rstrb,−1
b,k

)−1(
Rstra,−1

b,k ystra
b,k +Rstrb,−1

b,k ystrb
b,k

)
,

y f
b,k =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

xk + εεε
f
k +v f

k ,

εεε
f
k =

(
Rstra,−1

b,k +Rstrb,−1
b,k

)−1(
Rstra,−1

b,k Dstra
b εεεstra,k +Rstrb,−1

b,k Dstrb
b εεεstrb,k

)
,

v f
k =

(
Rstra,−1

b,k +Rstrb,−1
b,k

)−1(
Rstra,−1

b,k Dstra
b vstra,k +Rstrb,−1

b,k Dstrb
b vstrb,k

)
,

(28)

where Rstri
b,k is the covariance of the i-th star tracker represented in the body coordinate frame.

4. Results and Analysis

The attitude estimation accuracy for this study has been obtained by simulating the satellite orbit
and attitude to compute the vectors represented in the J2000 coordinate frame that are aligned with
the star tracker optical axes (ustra,k and ustrb,k). Then, using the information from the manufacturer
in Fig. 1, it has been possible to compute the LFE and NEA for each sensor. These errors have been
evaluated for each satellite position at each orbital plane during one year and the attitude estimation
accuracy has been obtained for several scenarios regarding the considered set of attitude sensors.
First the analysis has considered the routine operation mode, when all the sensors are fully available.
Then the analysis is repeated for different sensor failure scenarios as indicated in Tab. 1.

In scenarios 01 to 06, the star tracker measurements were fused by means of a recursive filter in
which the dynamic model is constructed using 22 and 27. In scenarios 01, 03, and 05, the filtering
algorithm is the Kalman filter using the true measurement error covariance of the star trackers as
provided by the manufacturer. However, such information is not embedded in the AOCS on-board
computer. Therefore, it uses a constant gain filter algorithm that is the steady-state solution of the
Kalman filter [10] based on the constant model of the star trackers accuracy. This algorithm was
used in scenarios 02, 04, and 06. In scenarios 07 and 08, the measurements of both star trackers
were represented in a common coordinate frame and then were fused using a static algorithm to
minimize the fused measurement noise covariance. The scenario 07 used the true covariance (NEA)
as provided by the manufacturer whereas the scenario 08 used the average over the whole celestial
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Table 1. Scenarios.
Scenario Available Sensors Fusion Algorithm

Star Tracker A Star Tracker B FOG
01 X X X Kalman filter
02 X X X Constant gain filter
03 X X Kalman filter
04 X X Constant gain filter
05 X X Kalman filter
06 X X Constant gain filter
07 X X Inverse covariance (true)
08 X X Inverse covariance (mean value)
09 X None
10 X None

Table 2. Simulation parameters.
Parameter Description Value Unit

∆t FOG sampling step. 0.01 s√
Narw FOG angular random walk. 0.00101 ◦/

√
h√

Qb Bias stability of the FOG. 0.0008 arcsec
λ Bias model time constant. 0.01 1/s

σxy,m NEA mean value over the celestial vault for both star
trackers in the optical plane for scenarios 02, 04, 06,
and 08.

0.0035 arcsec

σz,m NEA mean value over the celestial vault for both star
trackers in the optical axis for scenarios 02, 04, 06,
and 08.

0.02 arcsec

vault, as embedded in the AOCS on-board computer. Some simulation parameters can be found on
Tab. 2.

The purpose to compare the optimal Kalman filter (scenarios 01, 03, and 05) to the filter embedded
in the on-board computer (scenarios 02, 04, and 06) is to quantify if the degradation of the attitude
estimation accuracy due to the use of a suboptimal algorithm is noticeable. The other scenarios were
proposed to evaluate the attitude estimation accuracy degradation under a set of possible sensor
failures.

The attitude estimation accuracy can be measured by two components: 1) one low frequency error
(LFE) that is the result of the Star Tracker LFE and the gyro bias; and 2) one high frequency error
(NEA) that is the result of the sensor noises. These errors were computed for each satellite position
through one entire year and the statistics of these groups for each scenario can be seen in Tab. 3.
Notice that the total error is obtained by summing LFE with 3σ NEA for each sampling interval.
Additionally, in Fig. 4, the error maps computed for the scenario 02, which simulates the satellite
routine operation mode, are plotted. These maps show the computed attitude estimation accuracy in
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terms of LFE, NEA, and the total error for each satellite position (true anomaly) vs. all the orbital
planes in one entire year. Notice that only the illuminated part of the orbit was considered for this
analysis, since the Amazonia-1 payload is optic. The maps for the other scenarios have been omitted
for the sake of compactness.

Figure 4. Computed errors for the scenario 02. The X, Y, and Z axes are shown in the first, second,
and third rows respectively.

The results in Tab. 3 and in Fig. 4 lead to the following conclusions:
• The filter using the FOG (scenarios 01 to 06) greatly reduces the NEA, but the LFE is almost

the same when comparing to the scenarios in which the estimate is carried out by a static
algorithm, when the gyro is not available (scenarios 07 to 10).

• The Kalman filter (scenarios 01, 03, and 05) and the static fusion using the true inverse
covariance (scenario 07) are optimal algorithms in terms of minimization of error covariance.
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Table 3. Percentiles of the computed errors for each scenario.
LFE (arcsec) 3σ NEA (arcsec) Total (arcsec)

Scenario Axis 0% 50% 98% 0% 50% 98% 0% 50% 98%
X 20.17 21.22 22.36 0.52 0.70 0.84 20.75 21.92 23.15
Y 0.62 3.74 9.15 0.49 0.66 0.79 1.24 4.40 9.841
Z 12.97 14.74 16.94 0.50 0.67 0.81 13.49 15.41 17.66
X 20.27 21.28 22.49 0.60 0.72 0.88 20.88 22.00 23.30
Y 1.13 1.54 2.21 0.57 0.68 0.84 1.70 2.23 2.942
Z 13.13 13.84 14.74 0.58 0.69 0.85 13.72 14.54 15.51
X 22.87 27.83 31.83 0.92 1.32 1.66 23.89 29.17 33.27
Y 21.38 25.60 28.97 0.78 1.11 1.40 22.20 26.72 30.213
Z 19.84 24.86 28.65 0.84 1.19 1.48 20.72 26.07 29.99
X 23.04 28.19 33.02 1.09 1.34 1.82 24.17 29.56 34.65
Y 21.76 25.86 29.76 0.93 1.13 1.51 22.73 27.02 31.124
Z 20.76 25.13 29.24 1.00 1.21 1.61 21.79 26.36 30.68
X 23.84 29.78 35.30 0.97 1.39 1.72 24.87 31.19 36.89
Y 21.08 25.41 29.58 0.78 1.12 1.40 21.92 26.55 30.905
Z 18.33 22.32 26.21 0.79 1.14 1.43 19.18 23.47 27.52
X 24.76 30.03 35.89 1.14 1.42 1.92 25.93 31.49 37.64
Y 21.63 25.61 30.10 0.92 1.14 1.54 22.58 26.78 31.536
Z 18.61 22.59 27.00 0.93 1.16 1.57 19.57 23.78 28.44
X 20.17 21.21 22.50 5.43 10.11 14.95 25.64 31.40 36.98
Y 0.65 3.79 9.40 4.97 9.10 13.30 6.12 13.10 20.647
Z 12.98 14.76 17.14 5.07 9.36 13.74 18.18 24.29 29.84
X 20.20 21.27 22.57 5.44 10.22 15.28 25.70 31.56 37.26
Y 1.16 1.58 2.31 4.98 9.39 14.08 6.20 11.04 15.888
Z 13.09 13.86 14.89 5.08 9.62 14.43 18.20 23.56 28.81
X 22.24 29.00 37.06 19.59 44.88 84.08 43.04 74.53 118.00
Y 20.60 26.03 32.50 15.67 35.61 66.58 37.23 62.15 96.659
Z 18.41 24.34 31.44 17.58 40.13 75.16 37.05 65.07 103.81
X 22.42 29.23 38.13 21.27 49.32 91.42 45.00 79.24 126.63
Y 20.19 25.24 31.85 15.63 35.96 66.35 36.78 61.71 96.1110
Z 17.64 22.55 28.96 15.55 35.77 65.99 34.13 58.82 92.87

Thus, as it can be seen, the NEA are always smaller than that of the scenarios using suboptimal
algorithms. However, this is not true for the LFE. For example, the suboptimal algorithm in
scenario 02 outweighs the performance of the optimal one in scenario 01 for the Y axis. In
this case, the constant gain matrix of the suboptimal algorithm combines the star trackers
measurements in such a way that the fused LFE is much smaller than that obtained by the
optimal Kalman filter gain. Therefore, since the LFE value is much bigger than the NEA, the
total computed error for this case is smaller for the suboptimal filter.

• The effect of locally poor accuracy areas over the celestial vault, Fig. 1, is mitigated by
the combination of the two star trackers together with the filtering process using the gyro
measurements.
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5. Conclusions

This novel analysis extended the previous study about the Amazonia-1 estimation accuracy by adding
a more realistic error model of the star tracker measurements that takes into account the satellite
orbit and attitude. Moreover, it provided additional information about the mission performance
under a set of possible sensor failures. Ten different scenarios were proposed considering distinct
sets of sensors. When the gyro measurements are available, it is possible to construct the attitude
error dynamic model and estimate the state using a recursive filter. In this analysis, two filters
were evaluated: the Kalman filter and the constant gain filter, which is the filter embedded on the
on-board computer and is obtained from the Kalman filter steady-state response.

It was verified that in the routine operation mode the effect of taking into account the star tracker
accuracy variation on the filter gain evaluation was not benefic comparing to the constant accuracy
model due to the presence of low frequency errors (LFE). Also, effect of locally poor accuracy
areas over the celestial vault were mitigated by the combination of two star trackers and remarkably
smoothed by the filtering process with the gyro. The same does not happen under some sensor
failure conditions, when the current analysis becomes a more realistic accuracy prediction tool.

The filtering process helped to reduce the high frequency errors (NEA). Since the Kalman filter was
designed to provide the minimum mean square error estimate, the NEA obtained in these scenarios
was smaller than that of the scenarios using the constant gain filter. However, the magnitude of the
low frequency errors (LFE) when both star trackers measurements are available is much bigger than
that of NEA. Thus, it was verified that in some cases the total error using the constant gain filter
was smaller than that of the Kalman filter because of how the former combines the measurements
using the constant gain matrix.

Notice that if both star trackers have the same accuracy over the whole celestial vault, then the fused
measurement error is minimized by positioning the sensors with their optical axes orthogonal to
each other. However, the star tracker accuracy depends on the set of stars in its field of view. Thus,
further study will focus on how the two sensors can be positioned to minimize the total estimation
error.
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